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Fig. 12. Comparison of tracking in the distributed (top) and centralized (bottom) versions. Marker color indicates the ID assigned to each track. Both the central-
ized and the distributed approaches are approximate and track ID changes are visible in both approaches. The ground truth for each track is indicated by a black

line which is sampled every 10th frame.

TABLE I
TRACKING PERFORMANCE ON THE TWO-PERSON SEQUENCE. TESTING IS
DONE ON 50 FRAMES, SPACED TEN FRAMES APART. THESE RESULTS ARE
AVERAGED OVER FIVE RUNS FOR EACH SYSTEM, EACH USING
THE SAME MULTICAMERA VIDEO SEQUENCE

TP Fpe rmser(cm) | rmser/(°)
Centralized | 95 (95%) | 12 (12%) 5.8 20.8
Distributed | 94 (94%) | 4 (4%) 6.1 18.7

“@percentages are per frame, per person

system, the centralized system required an average of 3.6 0.2
extra tracks per person and O track-switches, and the distributed
system required 2.2 (.7 extra tracks and 0.1 track switches.

We also compare the centralized and distributed approaches
based upon the frame-by-frame tracking performance, as shown
in Table I. In each frame, we associate each ground-truth to a
single integrated face estimate, if there is an estimate within
a specific matching distance. True-positives (7'P) represent
ground-truth and integrated estimate pairs, while false-posi-
tives (F'P) represent estimates which do not correspond to
any ground-truth. Pairs are assigned starting with the closest
ground-truth and estimates, so that it is possible for an estimate
to be within the matching distance and still be considered an
FP.The S F estimates are based upon the TP pairs. These
results show that the distributed approach achieves comparable
performance to the centralized version.

VI. CONCLUSION

We have presented a completely distributed face tracking al-
gorithm that estimates the 6-DOF poses of multiple faces in real
time. Each camera individually computes the world pose of the

faces based upon their visual features. The observations of mul-
tiple cameras are integrated using a minimum variance estimator
and tracked using a Kalman filter. A clustering protocol is re-
sponsible for dynamically creating groups of cameras that track
a given face and for coordinating the distributed processing.

As our experimental results show, our algorithm performs
as well as a centralized approach while presenting the well-
known advantages of distributed systems: scalability and robust-
ness. Since the computational load is dynamically transferred
among processors as the people move in the field of view of the
camera network, our algorithm can potentially handle an arbi-
trary number of faces and can be scaled to much larger networks.
Also, since cluster leaders are dynamically elected and the clus-
tering protocol is robust to system failures, the algorithm does
not rely on a single server to process the information, therefore
avoiding a single point of failure.

One limitation of our current approach is the representation
of rotations using yaw, pitch, and roll angles, which, as any rep-
resentation of rotations in R2, have discontinuities that must be
handled as special cases. We currently restrict ourselves to rep-
resentations in R? to allow the use of standard techniques for
transforming distributions between Euclidean spaces. In the fu-
ture, we would like to extend our method to use quaternions,
but this requires more sophisticated techniques to transform ro-
tation estimates from a 3-D Euclidean space to a 3-D manifold
in a 4-D space.

Another aspect that requires consideration is that the min-
imum variance estimator — (5) and (6) — is based upon the
assumption that the camera observations are independent. Al-
though this is generally a good approximation, when we trans-
form the observations from the image space to the world space,
we incorporate prior knowledge about the size of a person’s
face. This introduces a bias in the world space which manifests
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