
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 10, OCTOBER 2010 2551

Cluster-Based Distributed Face Tracking
in Camera Networks

Josiah Yoder, Henry Medeiros, Johnny Park, and Avinash C. Kak

Abstract—In this paper, we present a distributed multicamera
face tracking system suitable for large wired camera networks.
Unlike previous multicamera face tracking systems, our system
does not require a central server to coordinate the entire tracking
effort. Instead, an efficient camera clustering protocol is used to
dynamically form groups of cameras for in-network tracking of
individual faces. The clustering protocol includes cluster propaga-
tion mechanisms that allow the computational load of face tracking
to be transferred to different cameras as the target objects move.
Furthermore, the dynamic election of cluster leaders provides ro-
bustness against system failures. Our experimental results show
that our cluster-based distributed face tracker is capable of ac-
curately tracking multiple faces in real-time. The overall perfor-
mance of the distributed system is comparable to that of a central-
ized face tracker, while presenting the advantages of scalability and
robustness.

Index Terms—Camera networks, distributed tracking, face
tracking, object detection.

I. INTRODUCTION

A S humans, our faces play a central role in how we com-
municate with one another in face-to-face encounters.

While the importance of face recognition in such communica-
tions is universally known, less widely acknowledged are the
roles played by the orientation of a face and the movement of
the head that help us understand many aspects of nonverbal
communications. The orientation of a face typically indicates
the visual focus of attention [1], [2] and can be an important
source of information in ascertaining how a person is inter-
acting with his/her environment. For example, in an application
scenario involving a supermarket, if a computer vision system
needed to figure out as to what object a customer was currently
looking, the orientation of the face would be a strong indicator
of that. Face/head orientation is also used in several important
forms of nonverbal communications, such as when a person is
nodding his/her head to express agreement, or when a person is
shaking his/her head sideways to express the opposite.

The fact that the pose of a person’s face holds important clues
as to how he/she is interacting with the environment has mo-

Manuscript received October 01, 2009; revised March 22, 2010; accepted
March 22, 2010. Date of publication April 26, 2010; date of current version
September 17, 2010. This work was sponsored by Olympus Corporation. The
associate editor coordinating the review of this manuscript and approving it for
publication was Prof. Rama Chellappa.

The authors are with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907 USA (e-mail: yoder2@purdue.
edu; hmedeiro@purdue.edu; jpark@purdue.edu; kak@purdue.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2010.2049179

tivated several researchers to work on face detection [3]–[6],
pose estimation [5], [7]–[12], and on face tracking [13]–[19].
It goes without saying that the ability of a computer system to
detect and track people’s faces in real time will open doors to a
host of new applications ranging from human-computer interac-
tion to surveillance. The contributions we have cited previously
have focused on extracting the needed information from single
camera images. However, it stands to reason that simultaneously
using multiple images taken from different viewpoints can only
lead to more robust estimation of the pose of a face, not to speak
of the enhanced ability to track the face/head of a person in
motion. Indeed, in the generic context of object tracking, there
has been much interest in combining information from multiple
cameras [20]–[22].

In the existing work on the use of several cameras simultane-
ously for estimating the pose of a face, a single computer pulls
together either all of the images captured by the cameras or the
features extracted from all the images. These centralized ap-
proaches to pose estimation and tracking may involve extensive
comparisons of the images, as in dense-stereo reconstruction
[23] or as in the construction of active appearance models [12],
[24]. Such approaches are not easy to implement in a distributed
computing environment composed of smart cameras — a theme
central to the work reported here. More appropriate for dis-
tributed implementations are those prior contributions that use
lightweight object features extracted from the individual camera
images [25]–[28]. Note that these contributions still require a
central server to process either all the images or the features ex-
tracted from all the images. There are two major shortcomings
to all methods that use a single processor for the computation of
the face pose: 1) The processor creates a single point of failure
and a prominent point of vulnerability in the system; and, per-
haps even more importantly, 2) the number of cameras that can
be connected to the processor is determined by the capabilities
of the processor. For those reasons, our focus here is on face
pose estimation and tracking algorithms that, from the ground
up, are designed specifically for a distributed implementation.

A distributed approach to the estimation of face pose and to
its tracking evidently requires coordination among the camera
nodes that are focusing on solving a particular instance of the
problem. As is now a common practice in wireless sensor net-
works, such coordination is best achieved if one of the nodes
is chosen to serve as a leader. In wireless sensor networks, a
collaborating set of nodes is usually referred to as a cluster and
the leader as a cluster head [29]–[33]. In this paper, we will use
cluster leader or simply leader to refer to the camera node that
is coordinating the computations being carried out by a collec-
tion of camera nodes. This is to avoid confusion with head that,
in the present context, is used more appropriately to refer to the

1057-7149/$26.00 © 2010 IEEE

2552 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 10, OCTOBER 2010

Fig. 1. 6-DOF face pose representation in the world coordinates and in the image space. (a) 6-DOF pose in the world coordinates, �� � ��� �� �� �� �� �� .
(b) 6-DOF pose in the image space, �� � ��� 	�
� �� �� � .

anatomical part of the human whose face is the focus of pose
estimation and tracking.

In addition to the need for a cluster leader, a distributed ap-
proach would also require only those camera nodes that are rel-
evant to the task at hand to participate in pose and tracking com-
putation. That is, assuming a moderate to large network of cam-
eras, we would want only those camera nodes that can actually
see a face to try to compute the pose of the face and to contribute
to its tracking. As the bearer of the face moves, this collection of
the camera nodes must also “move” accordingly. This dynamic
formation of a camera node cluster and the subsequent propaga-
tion of the cluster requires what is known as a clustering protocol
in the jargon of wireless sensor networks [34]–[40]. However,
these mainstream clustering protocols are only appropriate for
nondirectional sensor nodes. On account of the directional and
other unique properties of wireless camera sensors [41], [42], a
clustering protocol that is more suited for wireless camera net-
works is the one we presented in [43]. Our goal in this paper is
to show how our clustering protocol can be modified so that it
can be used in a network of wired cameras and serve as the un-
derlying framework for the design of a distributed face tracking
algorithm.

II. MULTICAMERA FACE TRACKING ALGORITHM

We start by presenting in this section a multicamera algorithm
for face tracking. Our approach is based upon the fact that one
can carry out a rough localization of a face, with respect to all its
six degrees of freedom (6-DOF), in a single camera image. Es-
timates of the position and the orientation of a face in the world
coordinates, as gleaned from the individual images in a camera
network, constitute a set of world-based 6-DOF pose observa-
tions for the face. These observations from the individual cam-
eras, along with the uncertainties associated with them, are then
integrated in the world coordinates using a minimum variance
estimator. A face is tracked in the world coordinates using this
integrated estimate.

A. 6-DOF Face Pose Representations

Before we describe our approach for multicamera face
tracking, let us briefly review the notation and the pose repre-
sentation used in this paper. Fig. 1(a) illustrates the 6-DOF pose

of a face in the world coordinates. We use a common representa-

tion, a six-element vector
for the world-coordinate representation of the pose. The first
three elements, denoted , represent the 3-D
position of the object and the last three elements, denoted

, the rotation of the object expressed in terms
of roll, pitch, and yaw.

We also represent the 6-DOF pose in terms of the position
and size of the face in the image plane and the rotation of
the face with respect to a frontal face. We call this represen-
tation the image-based 6-DOF pose [Fig. 1(b)], defined as

where rep-
resents the position of the face and its rotation.
The position of the face is in the form of a bounding-box —

specify the center of the bounding box and the scale.
The rotation parameter vector consists of roll , pitch ,
and yaw angles of the face,1 which are measured with re-
spect to a frontal face centered at ; these are distinct from
the rotation angles in both the world and camera coordinate
systems [27], [44].

B. Face Pose Computation

To compute the image-based face poses, we search each
frame for the occurrence of faces using standard face detection
techniques (such as [6], [45]). The position and the size of the
bounding box corresponding to each detected face is output
by the face detector. Although our framework allows for the
computation of the rotation parameter vector using any
face pose estimation technique (such as [10]), in this work we
detect only frontal faces. For a survey of face pose estimation
techniques, see [7].

We transform a 6-DOF pose observation from the image co-
ordinates into the world coordinates as follows: The transfor-
mation is divided into two components, one for obtaining the
world position vector and the other for obtaining the world
rotation vector

(1)

1There are other possible representations for the rotation of an object in world
or image-based coordinates. We discuss these in more detail in the conclusions
(Section VI).

YODER et al.: CLUSTER-BASED DISTRIBUTED FACE TRACKING IN CAMERA NETWORKS 2553

The world position vector is obtained by a method similar to
the one reported in [28]. That is

(2)

where and are, respectively, the rotation ma-
trix and the translation vector from the camera coor-
dinate system to the world coordinate system,

the unit vector pointing
toward the face in the camera coordinate frame, and a con-
stant that relates the image-based face scale to the distance of
the face from the camera.

The rotation vector in the world space, , is obtained by

(3)

where the rotation compensates for perspective distortion.
This rotation is based upon the unit vector defined previously
and the unit vector pointing along the optic axis of the camera,

. It is defined as the rotation about the axis by the
angle as in [27]. As described by the previously
shown equation, we convert the three-element image-based ro-
tation vector into an equivalent 3 3 rotation matrix
and multiply that by the appropriate rotation matrices to obtain
a 3 3 rotation matrix in the world coordinate frame. We then
transform the resulting rotation matrix back into an equivalent
3-element rotation vector , this operation being represented
by the notation .

C. Uncertainty Modeling

To take into account the uncertainty in the computation of the
face pose, we represent each image-based observation as a 6-D
Gaussian distribution , where the mean is
given by the actual image-based2 face pose , and the covari-
ance is a diagonal matrix whose elements are empirically
chosen parameters.

To obtain the distribution of the observations in world coor-
dinates , the distribution of the image-based observation
is propagated through the function of (1) using the Unscented
Transform [46]. This transform compensates for nonlinearities
by transforming a small collection of deterministic sigma points
through the function . The mean and the covariance of the
transformed distribution are determined from the transformed
sigma points. The transformed observation is then given by the
6-D Gaussian random variable .

This is obviously an approximation, but a reasonable one.
Sankaranarayanan and Chellapa, for example, have successfully
employed a similar approach in [47]. In fact, they show that
when a Gaussian random variable in is mapped to a different
plane through a homography, its distribution remains Gaussian
as long as its mean is sufficiently far from the line at infinity.
We believe that a similar argument can be made for the spatial
component of the transformation. Even for more
general transforms, such as the rotational component,

, the Unscented Transform is generally acknowledged

2Recall that a subscript � denotes an image-based observation, and a subscript
� a world observation.

Fig. 2. We represent world observations as a 6-DOF Gaussian distributions.
The spatial marginal of this distribution has a large amount of uncertainty along
the backprojected ray which intersects the face center.

to accurately estimate the mean and covariance of the trans-
formed distribution.

Note that the marginal distribution of the translational ele-
ments of the face pose has an intuitive interpretation — its
high-probability region forms an elongated ellipsoid which has
the largest uncertainty along the backprojection ray (Fig. 2).

D. An Evidence Accumulation Framework for Multicamera
Face Pose Estimation

As observations of a given face from multiple cameras be-
come available, they are integrated into a single estimate of the
position and the orientation of the face.

We use the Mahalanobis distance to compare the world-frame
versions of the face pose as obtained from two different cameras

(4)

where the superscripts and denote the two observations
being compared. To decide if two such observations are con-
sistent (that is, they correspond to the same face in two different
images), we compare the Mahalanobis distance to a matching
threshold . We declare two observations to be consistent if

.
Based upon the matching distances given by , we

determine a set of estimates that correspond to a person’s face.
We employ two different approaches for computing these con-
sistent sets, one for a distributed implementation of the final
world pose estimation, and the other for a centralized imple-
mentation of the same. These will be discussed in Sections IV
and V.

Once the observations of a person’s face that are consistent in
the sense described previously are collected in a set , we can
construct from the set the following minimum variance estimate
of the 6-DOF pose of the face in the world frame:

(5)

(6)

Here, and are the mean and covariance associated with
the world observation . One of the advantages of the uncer-
tainty reduction formulas (5) and (6) is that they can be easily
computed iteratively.

Once all of the observations are integrated into a single es-
timate, a Kalman filter can be used to track each person’s face
pose from frame to frame. This incorporates a motion model into

2554 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 10, OCTOBER 2010

Fig. 3. Evidence accumulation framework. Consistent world observations are found using the Mahalanobis distance. Corresponding observations are integrated
using a minimum variance estimator. The framework is naturally robust to incorrect detections.

the estimation process and provides a prediction of the face pose
in one frame based upon the estimates in the previous frames.

Fig. 3 is a pictorial depiction of how the 3-D pose evidence
gleaned from the individual cameras is integrated into a min-
imum variance estimate of the pose of the face in the world
frame. The example shown involves two cameras that provide
the observations and for the 6-DOF pose. These two ob-
servations are assumed to be consistent in the sense of satisfying
the Mahalanobis distance requirement mentioned earlier. Both
these observations would therefore be placed in the set for evi-
dence integration to yield the minimum variance estimate . It
is important to mention that this approach is naturally robust to
false face detections, as illustrated by the observations and

depicted in the figure. For each such presumably anoma-
lous observation in one camera, the likelihood of there existing
consistent observations in the other cameras would be low (ex-
cept, perhaps, for accidental matchings for the case of images of
crowded scenes when each image could include several faces).

III. EVENT-DRIVEN CLUSTERING IN WIRED

CAMERA NETWORKS

In this section, we describe a wired camera network protocol
that allows a group of cameras to collaboratively calculate the
6-DOF pose of a human face by dynamically forming a cluster
of cameras and electing a leader of the cluster to serve as the
coordinator for the collaborative effort. The clustering protocol
was devised with the purpose of facilitating distributed tracking
of objects, and it includes efficient propagation mechanisms
that allow the computational load to be transferred to different
camera nodes as the target object moves. In addition, the pro-
tocol is robust to the presence of errors in the visual features
extracted from the images of the objects being tracked.

A. Cluster-Based Object Tracking With Wired Camera
Networks

There are two commonly used graphs for representing a
camera network: 1) A communication graph in which an edge

between two camera nodes exists if they can directly com-
municate with each other; and 2) a vision graph in which an
edge between two camera nodes exists if they have overlapping
fields of view. In a wired camera network, since each camera
can communicate with all the other cameras in the network, the
communication graph is fully connected. In a wireless camera
network, on the other hand, each camera can only communicate
with cameras within its radio range; therefore, the communica-
tion graph for this case contains edges only between physically
proximal camera nodes. Therefore, the idea of employing a
clustering protocol designed for wireless camera networks in
wired networks may seem rather counter-intuitive. Nonethe-
less, as we will show in this section, the communication graph
of wireless camera networks and the vision graph of wired
camera networks share many similarities. As a consequence,
the clustering protocol for wireless cameras that we proposed
in [43] can be applied to wired camera applications with only
small changes.

In practice, for a camera network to effectively use its vision
graph to carry out, say, object tracking, a set of cameras in some
neighborhood of the network must all see the object so that each
camera in the set can extract visual features from its image of
the object and, perhaps, form hypotheses about the identity/pose
of the object. All the cameras that can see an object at any given
instant of time will constitute a graph which would be a sub-
graph of the vision graph. But that raises the question as to what
we mean by a set of cameras seeing an object simultaneously.
This question is answered by considering the set of cameras on
a pairwise basis. For any pair of cameras to see an object si-
multaneously means that the visual features extracted in the re-
spective images match. That is, a similarity criterion used to
compare such visual features passes a decision threshold. A set
of cameras that sees an object at the same time will be referred
to as a tracking graph. Obviously, a tracking graph is a dynamic
concept, in the sense that this graph will change from moment to
moment, depending upon which cameras are best able to detect
the object, extract its features, and then pass the feature com-
parison similarity tests. Fig. 4(a) illustrates one example of a

YODER et al.: CLUSTER-BASED DISTRIBUTED FACE TRACKING IN CAMERA NETWORKS 2555

Fig. 4. (a) Multiple cameras detecting the same object and the corresponding
tracking graph. (b) Multiple cameras detecting an object with distinct features
and the corresponding tracking graph.

tracking graph. In the example, all the cameras can identify a
target and, thus, may belong to a tracking graph. We place an
edge between two nodes of a tracking graph if there exist suffi-
cient similarities between the features extracted by the two cam-
eras. (Of course, a camera may participate in multiple tracking
graphs if it detects multiple objects.) The tracking graph shown
in 4(a) is complete because we assume that all the cameras in
this graph can extract similar features. Now consider the case
when the object features measured in two cameras are distinct,
as would be the case when the surface of an object is colored
partly red and partly black. In this case, as illustrated in Fig. 4(b),
although all the cameras can observe the same target, it is not
possible to establish a correspondence between the observations
at cameras 1 and 2, on the one hand, and at cameras 3 and 4, on
the other. Consequently the tracking graph in this case will not
be fully connected.

As we previously mentioned, the purpose of our protocol is to
form clusters of cameras that observe targets with similar visual
features. In the example shown in Fig. 4(a), the tracking graph
is complete, meaning that all the cameras are able to identify
the target with essentially the same set of features. In this case,
all the cameras in the tracking graph form a cluster for the clus-
tering protocol. Obviously, the same cannot be done in the ex-
ample shown in Fig. 4(b). In this case, each clique in the tracking
graph forms its own cluster. For the example shown, cameras 1
and 2 would form one cluster and cameras 3 and 4 another. In
wireless camera networks, multiple clusters must be allowed to
track the same target because of communication constraints. In
the case of wired cameras, although the communication graph is
complete, the tracking graph is not. Therefore, multiple clusters
must also be allowed to track the same target, at least initially
until more information about the target can be extracted at which
time these multiple clusters can be merged into a single cluster.

After the clusters are created to track specific targets, they
must be allowed to propagate through the network as the tar-
gets move. Cluster propagation refers to the process of 1) ac-
cepting new camera nodes into a cluster as they identify and
recognize the same object, 2) removing the camera nodes that
can no longer see the object, and 3) electing a new cluster leader
as the current leader leaves the cluster. Adding a new camera
node to a cluster and removing an existing camera node from a
cluster are simple operations. However, when the cluster leader
leaves a cluster, proper mechanisms must be provided to elect
a new leader. In addition, since multiple clusters are allowed
to track the same target, as these clusters collect further infor-

mation about the target, they may eventually be able to con-
clude that they are in fact tracking a common object. In wireless
camera networks, as the clusters propagate, new cameras that
join them may introduce previously nonexisting communication
links between the clusters, thereby allowing them to coalesce
[43]. In wired camera networks, the acquisition of additional
information about the target may produce a similar result in the
tracking graphs. In this case, what were previously two sepa-
rate partitions of a tracking graph coalesce into a single clique,
allowing what were two different clusters of camera nodes to
operate as a single cluster.

As the reader would expect, dynamic cluster formation re-
quires comparing the features extracted by the different camera
nodes. Feature comparisons between different images of the
same object can always be expected to be erroneous, not the
least because of the differences in the images recorded from dif-
ferent viewpoints. We can expect difficulties even for the sim-
plest of the objects — unless they look the same from all view-
points. In addition to the difficulties that are inherent to feature
comparisons, another source of difficulty in our case is that even
when two of the camera nodes believe that they are looking at
different objects (because of the differences in the feature values
recorded), the observations made by a third camera may bear
sufficient similarity to those in the first two cameras and this
third camera may believe that all three cameras are looking at the
same object. To illustrate this point, assume our object is very
simple and consists of a multicolored ball, as shown in Fig. 5(a),
and that the main feature extracted from the images is the av-
erage color value in the image. Obviously, whereas cameras 2
and 3 will not be able to establish a correspondence between
their observations, camera 1 has enough information to know
that the object it sees corresponds simultaneously to the obser-
vations of cameras 2 and 3. Similarly, cameras 1 and 4 will not
be able to recognize that their observations correspond to the
same object, but cameras 2 and 3 can create an effective visual
connection between cameras 1 and 4 by partially matching the
target’s features. Under these conditions, ideally it should be
possible to create a single cluster that consists of all the cam-
eras that can detect the same target (cameras 1, 2, 3, and 4 in
our example). However, this would also increase the chances
of grouping together camera nodes that are actually seeing dif-
ferent objects, as illustrated in Fig. 5(b) and (c). Evidently, in
the two examples presented in Fig. 5(b) and (c), one could use
camera calibration information to figure out that the objects in-
volved are different. This is not always possible, however, be-
cause of spatial uncertainties involved in computing the position
of an object, especially along the camera axis.

To ensure that disparate objects seen by the different cam-
eras in a vision graph do not result in the same tracking graph,
we could also raise the bar on the decision thresholds used for
cross-camera feature similarity comparisons. (Obviously, that
would still not prevent the difficulties created by the case when
different objects do look the same from different viewpoints.)
However, if cross-camera feature similarity thresholds are set
too high, that could impede the formation of a tracking graph
with more than one camera node. We have therefore adopted a
middle approach that consists of establishing a distinction be-
tween a tracking graph and a cluster. Only those camera nodes

2556 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 10, OCTOBER 2010

Fig. 5. (a) Multiple cameras detecting a common object by partial feature
matching and the corresponding tracking graph. (b) Incorrectly matched objects
and the corresponding tracking graph. (c) Sequence of incorrectly matched
objects and the corresponding tracking graph.

that are one another’s immediate neighbors in a tracking graph
can form a cluster. That is, two camera nodes are allowed to
join the same cluster if they both pass the cross-camera feature
comparison similarity tests and they are each other’s immediate
neighbors in a tracking graph (and, by implication in the vision
graph). Therefore, instead of creating a large cluster to track
the same target, we prefer to tolerate the formation of multiple
small clusters and to allow them to coalesce later as more in-
formation about the target is collected. Here, we can draw a
parallel with the complex strategies required to construct and
update large multihop clusters in wireless sensor networks [35].
Although it is possible to create such large clusters, the overhead
involved in the process makes them undesirable for real-time,
lightweight distributed applications. Similarly, although it may
be possible to construct large clusters of wired cameras by em-
ploying more sophisticated multicamera object tracking algo-
rithms, the required message and time complexity could be pro-
hibitively large.

It is true that even the constraint that only immediate neigh-
bors in a tracking graph be allowed to form a cluster may result
in a cluster that tracks multiple objects thinking that they are the
same. This is best exemplified by the simple situation illustrated
in Fig. 5(c). Fortunately, unless all of the objects are moving to-
gether along the same trajectory (in which case one could argue
that they be treated as a single extended object), such a cluster is
likely to break into multiple clusters as a cluster leader departs
because it can no longer see the object. For example, suppose
camera 2 in Fig. 5(c) is elected a cluster leader, and cameras
1 and 3 incorrectly decide that they are detecting the same ob-
ject as detected by camera 2. In that case, a single cluster would

Fig. 6. State transition diagram of a cluster-based object tracking system using
a camera network.

be created to track all three targets as if they corresponded to a
single target. But if the object detected by camera 2 leaves the
camera’s field of view, the camera node will leave the cluster,
and two new independent clusters will be formed by cameras 1
and 3 to detect the remaining (and now clearly distinct) objects.
It is interesting to note that a similar situation arises in wireless
camera networks [43]. In such networks, all the members of a
single-hop cluster must be able to communicate with the cluster
leader; however, the sensor nodes may not necessarily be able
to communicate with one another directly. Therefore, when the
cluster leader leaves the cluster, it may be necessary to create
multiple new clusters.

Fig. 6 shows the state transition diagram of our cluster-based
object tracking system using a camera network. Upon initial-
ization, the network monitors the environment for any objects
of interest. As objects are detected, for each object one or more
clusters are formed to track it. These clusters propagate through
the network to keep track of the objects in motion. Finally, if
two or more clusters conclude that they are tracking the same
object, they may coalesce into a larger cluster. Moreover, since
the network is able to keep track of multiple objects simultane-
ously, each camera may belong to more than one cluster at the
same time. In practice, that requires that each camera maintain a
different state for each of the objects that it recognizes and that
are currently being tracked by the network.

B. Clustering Protocol

In this section, we briefly describe our clustering protocol for
camera networks. A more detailed description of the protocol in
the context of wireless camera networks can be found in [43],
[48]. The messages exchanged by the cameras for cluster forma-
tion and propagation activities include data packets that consist
of visual features extracted and their corresponding values for
each object detected in the scene. Obviously, when one camera
node receives such a message from another camera node, the re-
ceiving node accepts the message only if it has itself detected an
object with similar attributes and values. As the reader would ex-
pect, at network initialization time, the calibration information
at each camera node is used to construct a vision graph that is
stored at every node of the network in the form of an adjacency
list. Each node uses the vision graph to filter out the messages
from those camera nodes that are not directly connected to it in
the vision graph.

1) Cluster Leader Election: We employ a two-phase cluster
leader election algorithm. In the first phase, the nodes in the

YODER et al.: CLUSTER-BASED DISTRIBUTED FACE TRACKING IN CAMERA NETWORKS 2557

same tracking graph compete to become the leader of the
cluster. (One possible criterion for this competition is given in
Section IV-B.) After the first phase, at most one camera node
elects itself as the cluster leader among its direct neighbors
in a tracking graph, and the rest join the cluster. During the
second phase, the cameras that were left without a cluster leader
(because their cluster leader candidate joined another cluster)
elect the next best candidate as the cluster leader.

2) Cluster Propagation: Inclusion of new members into ac-
tive clusters takes place as follows: When a camera detects a new
object, it proceeds normally, as in the cluster formation step, by
sending to its neighbors a create cluster message and waiting
for the election process to take place. However, if there is an ac-
tive cluster tracking the same object, the cluster leader replies
with a message requesting that the camera join its cluster. The
camera that initiated the formation of a new cluster then halts
the election process and replies with a join cluster message.

Removal of cluster members is trivial. When an object leaves
the field of view of a cluster member, all the member has to do is
send a message informing the cluster leader that it is leaving the
cluster. The cluster leader then updates its list of cluster mem-
bers. If the cluster member is tracking multiple objects at the
moment, it terminates only the connection related to the object
that left its field of view.

Cluster propagation also involves leader reselection and
cluster coalescence, which we explain in the following.

a) Cluster Leader Reselection: Assuming that the cluster
leader has access to the latest information about the po-
sition of the target with respect to each cluster member,
it is able to keep an updated list of the best cluster leader
candidates. When the cluster leader decides to leave
the cluster, it sends a message to the remaining camera
nodes containing a sorted list of the best cluster leader
candidates. (This message also includes any additional
state information for the cluster head, such as the state
of the Kalman filter we will discuss in Section IV-C). A
new cluster leader is then selected following the second
phase of the regular cluster leader election mechanism.
This approach not only allows for cluster fragmentation,
but also for seamless cluster coalescence.

b) Cluster Coalescence: Consider two clusters, A and B,
that are propagating toward each other. As explained
previously, cluster propagation entails establishing a
new cluster leader as the previous leader loses sight of
the object. Now consider the situation when a camera
is designated to become the new leader of cluster A
and is tracking the same object as cluster B. Under this
circumstance, the camera node that was meant to be A’s
new leader is forced to join cluster B. As the members of
cluster A overhear their prospective cluster leader joining
cluster B, they also join B.

c) Cluster Maintenance: Additional robustness to failures is
achieved by a periodic refresh of the cluster status. Since
the protocol is designed to enable clusters to carry out
collaborative processing, it is reasonable to assume that
cluster members and cluster leaders exchange messages
periodically. Therefore, we can use a soft-state based ap-
proach [49] to keep track of cluster membership.

Fig. 7. Block diagram of our distributed face tracker.

IV. CLUSTER-BASED DISTRIBUTED FACE TRACKING

In this section, we present the architecture of our cluster-
based distributed face tracking system. Fig. 7 shows a block dia-
gram of the system. At each camera node, as a new image frame
becomes available, a face detector module detects all the faces
present in the frame and computes their corresponding world
poses. This information is then delivered to the object manager,
which is responsible for checking whether the faces detected
in this frame correspond to any of the existing faces currently
being tracked or to a new detection. This is done by the matching
module that compares the identities of the faces detected in this
frame to the identities of all the existing faces currently being
tracked. (We will describe the features used to establish iden-
tity in the next subsection.) If a face detected in this frame cor-
responds to a new detection, the object manager instantiates a
new clustering module with the responsibility to keep track of
this new face. In the example shown in Fig. 7, faces are being
tracked by camera node 1. When a clustering module is instan-
tiated, it starts a new cluster leader election process. If, on the
other hand, a face detected in this frame is identified as one of the
existing faces currently being tracked, all that the object man-
ager has to do is to transfer the face pose observation to the cor-
responding clustering module.

When a clustering module starts a cluster leader election, it
broadcasts this intent to its vision neighbors. When another clus-
tering module receives this message, it checks whether the face
pose contained in the message corresponds to the face for which
it is responsible. Again this is done by the matching module
within the object manager. After the cluster leader election fin-
ishes, the clustering module reports to the object manager its
current cluster status, i.e., whether it became a cluster leader or
a cluster member. The object manager can then use this infor-
mation to decide how to process new observations of the specific
face as follows.

For each face detected in the current frame, if the face is asso-
ciated with an existing cluster and the camera node is currently

2558 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 10, OCTOBER 2010

a member of that cluster, the object manager requests that the
clustering module send this observation to its cluster leader.3 If
a face detected in the current frame is associated with an existing
cluster and the camera node is the leader of that cluster, the ob-
ject manager simply updates the face pose estimate using this
new observation. The same happens if the clustering module re-
ceives an observation from one of its cluster members. In both
cases, the face pose is updated by the integration module using
(5) and (6).

If the object manager at a given camera node does not detect
a particular individual’s face for several frames, it terminates
the corresponding clustering module. If the camera node is cur-
rently the leader of that cluster, its termination triggers cluster
propagation so that a new cluster leader can be assigned to keep
track of the face. On the other hand, if the camera node is only
a cluster member, its termination simply triggers a report to the
cluster leader that it is leaving the cluster.

A. Use of Position as a Face Identification Feature

The clustering protocol as described in Section III distin-
guishes between the features used to identify targets and the es-
timates of the target position. However, since robust face recog-
nition methods that work in real time under realistic conditions
are not yet available [50], at this time we use the pose of a face
as the feature that defines its identity. In [51], the authors also
use a spatial feature (object motion) for track identification. One
of the challenges in using the pose for face identification is that,
as the face moves, the face identifier also changes. Nonetheless,
as long as the people being tracked do not move too abruptly
and as long as the pose estimates are kept up-to-date by the ob-
ject manager on a frame by frame basis whenever their faces are
detected in the camera images, we can expect our approach to
face identification to work without difficulties.

B. Cluster Leader Election Criterion

Cluster leader election requires that we define a criterion that
must be satisfied by a camera node if it is to become a cluster
leader. The criterion that we use currently is based upon the dis-
tance between the location of the face as given by the projection
of into the camera image plane and the camera center of the
camera in question. The main advantages of this criterion are
that it generally creates relatively long-lived cluster leaders and
the distance can be computed easily in each camera.

C. System Synchronization

It is well known that synchronous distributed systems are in
general less complex and, for some network types, more effi-
cient than asynchronous systems [52]. Since synchronizing the
time clocks of camera nodes interconnected by a local area net-
work is relatively simple, we chose to employ a synchronous
approach for our distributed camera network system. In our
system, camera clocks are synchronized using the network time
protocol (NTP). Moreover, we assume that all the cameras in the
network have a consistent frame capturing rate. However, even
when that is true, it is not simple to synchronize the image cap-
ture times without using special hardware. That is, it is difficult

3All internode communication takes place through the clustering modules at
each node.

Fig. 8. Buffer mechanism for camera synchronization. Camera capture and
face detection are executed asynchronously. The results are stored in a buffer
which is processed synchronously during the collaboration frame intervals.

Fig. 9. Collaboration interval steps. After a short setup period, all the cameras
share information during the clustering step. Afterwards, cluster leaders broad-
cast the results to the cluster members, and postprocessing algorithms may take
place.

to guarantee that the time instant at which the different cameras
capture their frames will be exactly the same for all cameras.
To overcome this problem, we designed a buffering mechanism
that allows the cameras to store the current detections until they
reach a synchronization point. The buffering mechanism is illus-
trated in Fig. 8. As the cameras acquire the initial frame, they
store the information in the buffer until they reach a synchro-
nization point. At this point, collaborative processing is initiated
and the cameras are allowed to share information. In subsequent
frames, new synchronized collaboration frame intervals occur at
a predefined rate that is common to all cameras. This works as
long as face detection can be carried out in less than one frame
interval. However, since face detection time is variable, it may
occasionally take longer than one frame interval. In that case,

YODER et al.: CLUSTER-BASED DISTRIBUTED FACE TRACKING IN CAMERA NETWORKS 2559

Fig. 10. Snapshot of our tracking results. Top figures: graphical representation of the camera array and estimated poses. Bottom figures: images captured by each
camera and the detected faces. The two frames at the top illustrate the propagation of a cluster leader.

the detections corresponding to that frame are discarded and a
new frame is processed without detriment to the collaborative
processing synchronization.

Fig. 9 shows in detail the sequence of events that takes place
during the collaboration intervals. During the brief setup step,
all new clustering modules are initialized and prepared to re-
ceive messages from other cameras. This step provides toler-
ance for small errors in the synchronization of the cameras. Al-
though not strictly necessary, this step greatly improves system
efficiency by not having to buffer messages received by unini-
tialized clustering modules. At the beginning of the clustering
step, the clustering protocol is executed and clusters are cre-
ated, dissolved, or propagated as necessary. After the states of
all the clusters are updated, the cluster members send their ob-
servations to the cluster leaders, which then integrate them into
face pose estimates. After the clustering step, the cluster leaders
update the estimate and prediction of the location of each face
using a Kalman filter. The cluster leaders also broadcast the pre-
dicted face poses to the cluster members for association with the
face detections in the next frame. To avoid the cluster switching
from one person to another, if the cluster leader detects that the
new face pose estimate is far from the Kalman filter’s prediction,
it terminates the cluster by sending a message to its members
and deactivating itself. Finally, after the required processing is
concluded, our system provides a time slot for the application
of postprocessing algorithms. In our current system, we use this
slot to log the results of our experiments.

V. EXPERIMENTS

We implemented our algorithm on a network of twelve
firewire cameras connected to three quad-core desktop com-

puters. The cameras are arranged side-by-side in the form of a
2 6 array all facing approximately the same direction. Each
camera has a separate process assigned to it. In each process,
we manage the face position estimates and camera clustering
assigned to that camera, and detect faces with a boosted classi-
fier cascade [6], [45] trained using the FERET database [53].
Fig. 10 shows four snapshots of the graphical user interface of
our system. The top half of each snapshot shows a computer
graphics representation of the 3-D positions of the camera
array, the clusters tracking the faces, and the estimated poses
of the detected faces. Each camera is represented by a small
cube and the face poses are indicated by a 3-D face model [54].
The circles represent cluster leaders and the lines represent
the members. A dashed circle or line indicates that the cluster
leader or member did not contribute an observation for that
particular frame. The bottom part of each snapshot shows the
images captured by the cameras and the corresponding face
detections as computed by the individual cameras.

Fig. 11 shows qualitative results of one run of our experi-
ments for one of the two people in the same sequence shown
in Fig. 10. The left column shows the 3-D positions of the face,
and the right column shows its orientation. In this figure, ground
truth is represented by solid lines and the markers with different
colors represent the estimated face poses. The reason for using
different colors on the trajectories is to illustrate the moments
when the system loses track of a person’s face — each time the
track is lost, a different color is used. Notice that when a cluster
loses track, another cluster almost immediately is created and
starts to track the face again.

In the experiments we present here, we require that all the
cameras in a cluster detect a frontal face. A face can be accu-

2560 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 10, OCTOBER 2010

Fig. 11. Qualitative results of one experimental run of the distributed face tracker on one of two faces (the second face is omitted for clarity).

rately tracked if it is detected by at least two cameras. When the
individual cameras have low detection rates, additional camera
views can increase the likelihood of detecting the face. If non-
frontal face poses can be localized in the individual images,
fewer cameras will be needed by our protocol. Even when de-
tecting only frontal faces, many camera configurations can be
used with our current protocol. Because the clustering protocol
allows for the propagation of the cluster, new cameras in dif-
ferent orientations can pick up the tracking of the face as the
face rotates away from the old cameras.

A. Comparison With a Centralized Method

To provide a quantitative evaluation of our distributed ap-
proach, we compare it to a centralized method which operates in
a similar framework but does not include the clustering protocol.

The centralized version has many of the features of the dis-
tributed approach. As in the distributed approach, we perform
face detection locally in each camera. Thus, face detection —
which takes most of the processing time in our experiments —
is still distributed in the centralized approach. The timing of
both approaches is also similar. In both systems, we synchronize
the processing of images as illustrated in Fig. 8. Despite these
similarities, there are fundamental differences between the cen-
tralized and distributed versions. In the centralized version, no
leader is elected. Instead, collaborative processing takes place in
two steps. In the first step, every camera sends the observations
to a single node for central processing. In the second step, the

central node processes all the observations it received for that
frame in batch.

Because all of the observations are available in batch, we par-
tition them into sets , , where is the number
of people in the environment, using an approximate clique clus-
tering algorithm [55]. The sets are chosen to approximately min-
imize the sum of intraset costs

(7)

This algorithm requires both positive and negative costs to
produce nontrivial clusterings, so we use the cost function

, where deter-
mines the zero-cost distance, and is given in (4).

Fig. 12 shows a comparison between the centralized tracker
and our distributed approach. The tracks shown in the figure
correspond to the coordinates of the two individuals’ faces
for the same sequence shown in Fig. 10. As in Fig. 11, different
colors illustrate the moments when the system loses track of
a face. Since neither approach represents an ideal tracker, lost
tracks occur in both. We record two kinds of tracking errors
for our system. If a track is lost, and a new one is created to
track a person, we call this an “extra track.” If a tracker switches
from one person to another, we call this a “track switch.” Track
switches are worse than extra tracks because they indicate that a
single tracker tracks two people. They are also much more rare
in both the centralized and distributed systems. In ten runs of the

YODER et al.: CLUSTER-BASED DISTRIBUTED FACE TRACKING IN CAMERA NETWORKS 2561

Fig. 12. Comparison of tracking in the distributed (top) and centralized (bottom) versions. Marker color indicates the ID assigned to each track. Both the central-
ized and the distributed approaches are approximate and track ID changes are visible in both approaches. The ground truth for each track is indicated by a black
line which is sampled every 10th frame.

TABLE I
TRACKING PERFORMANCE ON THE TWO-PERSON SEQUENCE. TESTING IS

DONE ON 50 FRAMES, SPACED TEN FRAMES APART. THESE RESULTS ARE

AVERAGED OVER FIVE RUNS FOR EACH SYSTEM, EACH USING

THE SAME MULTICAMERA VIDEO SEQUENCE

percentages are per frame, per person

system, the centralized system required an average of 3.6 0.2
extra tracks per person and 0 track-switches, and the distributed
system required 2.2 0.7 extra tracks and 0.1 track switches.

We also compare the centralized and distributed approaches
based upon the frame-by-frame tracking performance, as shown
in Table I. In each frame, we associate each ground-truth to a
single integrated face estimate, if there is an estimate within
a specific matching distance. True-positives represent
ground-truth and integrated estimate pairs, while false-posi-
tives represent estimates which do not correspond to
any ground-truth. Pairs are assigned starting with the closest
ground-truth and estimates, so that it is possible for an estimate
to be within the matching distance and still be considered an

. The estimates are based upon the pairs. These
results show that the distributed approach achieves comparable
performance to the centralized version.

VI. CONCLUSION

We have presented a completely distributed face tracking al-
gorithm that estimates the 6-DOF poses of multiple faces in real
time. Each camera individually computes the world pose of the

faces based upon their visual features. The observations of mul-
tiple cameras are integrated using a minimum variance estimator
and tracked using a Kalman filter. A clustering protocol is re-
sponsible for dynamically creating groups of cameras that track
a given face and for coordinating the distributed processing.

As our experimental results show, our algorithm performs
as well as a centralized approach while presenting the well-
known advantages of distributed systems: scalability and robust-
ness. Since the computational load is dynamically transferred
among processors as the people move in the field of view of the
camera network, our algorithm can potentially handle an arbi-
trary number of faces and can be scaled to much larger networks.
Also, since cluster leaders are dynamically elected and the clus-
tering protocol is robust to system failures, the algorithm does
not rely on a single server to process the information, therefore
avoiding a single point of failure.

One limitation of our current approach is the representation
of rotations using yaw, pitch, and roll angles, which, as any rep-
resentation of rotations in , have discontinuities that must be
handled as special cases. We currently restrict ourselves to rep-
resentations in to allow the use of standard techniques for
transforming distributions between Euclidean spaces. In the fu-
ture, we would like to extend our method to use quaternions,
but this requires more sophisticated techniques to transform ro-
tation estimates from a 3-D Euclidean space to a 3-D manifold
in a 4-D space.

Another aspect that requires consideration is that the min-
imum variance estimator — (5) and (6) — is based upon the
assumption that the camera observations are independent. Al-
though this is generally a good approximation, when we trans-
form the observations from the image space to the world space,
we incorporate prior knowledge about the size of a person’s
face. This introduces a bias in the world space which manifests

2562 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 10, OCTOBER 2010

itself as observations which are consistently closer to the camera
which detects them, or farther away, depending upon whether
the person’s face is larger or smaller than expected. Although
we believe that most of this bias is removed in the integration
of the observations from multiple cameras — and our experi-
mental results support that claim — in the future we would like
to carefully investigate the effects of this bias in the estimation
of the positions of the faces.

One advantage of our approach is that while it does not re-
quire image-based tracking methods such as particle filters or
mean-shift [56]–[58], it does provides a good framework for in-
corporating such trackers which operate independently on dif-
ferent camera images. These trackers would provide additional
observations which could be used to keep track of the faces
when the interval between face detections is large. When new
face detections become available, they could be used to reduce
the chance that the trackers drift off of the true face location.

ACKNOWLEDGMENT

The authors would like to thank H. Iwaki and A. Kosaka for
many helpful discussions.

REFERENCES

[1] R. Stiefelhagen, M. Finke, J. Yang, and A. Waibel, “From gaze to focus
of attention,” in Proc. Int. Conf. Visual Information and Information
Systems, 1999, pp. 761–768.

[2] K. Smith, S. Ba, D. Gatica-Perez, and J.-M. Odobez, “Tracking the
visual focus of attention for a varying number of wandering people,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 7, pp. 1212–1229,
Jul. 2008.

[3] H. Rowley, S. Baluja, and T. Kanade, “Neural network based face de-
tection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 1, pp.
23–38, Jan. 1998.

[4] H. Schneiderman and T. Kanade, “A statistical method for 3-D object
detection applied to faces and cars,” in Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2000, vol. I, pp. 746–751.

[5] C. Huang, H. Ai, Y. Li, and S. Lao, “High-performance rotation in-
variant multiview face detection,” IEEE Trans. Pattern Anal. Mach. In-
tell., vol. 29, no. 4, pp. 671–686, Apr. 2007.

[6] P. Viola and M. Jones, “Robust real-time face detection,” Int. J.
Comput. Vis., vol. 57, no. 2, pp. 137–154, 2004.

[7] E. Murphy-Chutorian and M. Trivedi, “Head pose estimation in com-
puter vision: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
31, no. 4, pp. 607–626, Apr. 2009.

[8] L. Brown, Y. Tian, I. Center, and N. Hawthorne, “Comparative study of
coarse head pose estimation,” in Proc. Workshop on Motion and Video
Computing, 2002, pp. 125–130.

[9] L. Zhao, G. Pingali, and I. Carlbom, “Real-time head orientation esti-
mation using neural networks,” in Proc. Int. Conf. Image Processing,
2002, pp. I-297–I-300.

[10] E. Murphy-Chutorian, A. Doshi, and M. Trivedi, “Head pose estima-
tion for driver assistance systems: A robust algorithm and experimental
evaluation,” in Proc. IEEE Intelligent Transportation Systems Conf.,
Sep. 2007, pp. 709–714.

[11] B. Raytchev, I. Yoda, and K. Sakaue, “Head pose estimation by
nonlinear manifold learning,” in Proc. Int. Conf. Pattern Recognition,
2004, pp. 462–466.

[12] T. Cootes, G. Edwards, and C. Taylor, “Active appearance models,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6, p. 681, Jun.
2001.

[13] T. Maurer and C. von der Malsburg, “Tracking and learning graphs and
pose on image sequences of faces,” in Proc. IEEE Int. Conf. Automatic
Face and Gesture Recognition, 1996, pp. 176–181.

[14] T. S. Jebara and A. Pentland, “Parametrized structure from motion for
3-D adaptive feedback tracking of faces,” in Proc. IEEE Conf. Com-
puter Vision and Pattern Recognition, 1997, pp. 144–150.

[15] A. Schödl, A. Haro, and I. Essa, “Head tracking using a textured polyg-
onal model,” in Proc. Workshop on Perceptual User Interfaces, 1998,
pp. 43–48.

[16] J. Heinzmann and A. Zelinsky, “3-D facial pose and gaze point esti-
mation using a robust real-time tracking paradigm,” in Proc. Int. Conf.
Automatic Face and Gesture Recognition, 1998, pp. 142–147.

[17] D. Decarlo and D. Metaxas, “Optical flow constraints on deformable
models with applications to face tracking,” Int. J. Comput. Vis., vol. 38,
no. 2, pp. 99–127, 2000.

[18] M. La Cascia, S. Sclaroff, and V. Athitsos, “Fast, reliable head tracking
under varying illumination: An approach based on registration of tex-
ture-mapped 3-D models,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
22, no. 4, pp. 322–336, Apr. 2000.

[19] J. Tu, T. Huang, and H. Tao, “Accurate head pose tracking in low res-
olution video,” in Proc. IEEE Int. Conf. Automatic Face and Gesture
Recognition, 2006, pp. 573–578.

[20] Z. Zhang, A. Scanlon, W. Yin, L. Yu, and P. L. Venetianer, “Video
surveillance using a multi-camera tracking,” in Multi-Camera Net-
works: Principles and Applications, H. Aghajan and A. Cavallaro,
Eds. New York: Elsevier, 2009, ch. 18, pp. 435–456.

[21] S. Calderara, R. Cucchiara, R. Vezzani, and A. Prati, “Statistical pat-
tern recognition for multi-camera detection, tracking, and trajectory
analysis,” in Multi-Camera Networks: Principles and Applications, H.
Aghajan and A. Cavallaro, Eds. New York: Elsevier, 2009, ch. 16,
pp. 389–414.

[22] J. Wu and M. Trivedi, “A two-stage head pose estimation framework
and evaluation,” Pattern Recognit., vol. 41, no. 3, pp. 1138–1158, 2008.

[23] L. Morency, A. Rahimi, N. Checka, and T. Darrell, “Fast stereo-based
head tracking for interactive environments,” in Proc. IEEE Int. Conf.
Automatic Face and Gesture Recognition, 2002, pp. 390–395.

[24] S. Koterba, S. Baker, I. Matthews, C. Hu, J. Xiao, J. Cohn, and T.
Kanade, “Multi-view AAM fitting and camera calibration,” in Proc.
IEEE Int. Conf. Computer Vision, 2005, vol. I, pp. 511–518.

[25] M. Yasumoto, H. Hongo, H. Watanabe, and K. Yamamoto, “Face di-
rection estimation using multiple cameras for human computer inter-
action,” in Proc. Int. Conf. Advances in Multimodal Interfaces—ICMI,
2000, pp. 222–229.

[26] C. Chang, C. Wu, and H. Aghajan, “Pose and gaze estimation in multi-
camera networks for non-restrictive HCI,” in Proc. IEEE Int. Workshop
on HCI, 2007, vol. 4796, p. 128.

[27] E. Murphy-Chutorian and M. Trivedi, “3-D tracking and dynamic anal-
ysis of human head movements and attentional targets,” in Proc. Int.
Conf. Distributed Smart Cameras, 2008, pp. 1–8.

[28] H. Iwaki, G. Srivastava, A. Kosaka, J. Park, and A. Kak, “A novel evi-
dence accumulation framework for robust multi-camera person detec-
tion,” in Proc. ACM/IEEE Int. Conf. Distributed Smart Cameras, Sep.
2008, pp. 1–10.

[29] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An ap-
plication-specific protocol architecture for wireless microsensor net-
works,” IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 660–670,
Oct. 2002.

[30] S. Bandyopadhyay and E. Coyle, “An energy efficient hierarchical
clustering algorithm for wireless sensor networks,” in Proc. IEEE
INFOCOM, 2003, vol. 3, pp. 1713–1723.

[31] O. Younis and S. Fahmy, “HEED: A hybrid, energy-efficient, dis-
tributed clustering approach for ad hoc sensor networks,” IEEE Trans.
Mobile Comput., vol. 3, no. 4, pp. 366–379, Oct.–Dec. 2004.

[32] S. Soro and W. Heinzelman, “Prolonging the lifetime of wireless sensor
networks via unequal clustering,” in Proc. IEEE Int. Parallel and Dis-
tributed Processing Symposium, Apr. 2005.

[33] C. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao, “Distributed group
management for track initiation and maintenance in target localization
applications,” in Proc. IEEE Int. Workshop on Information Processing
in Sensor Networks, Apr. 2003.

[34] W.-P. Chen, J. Hou, and L. Sha, “Dynamic clustering for acoustic target
tracking in wireless sensor networks,” IEEE Trans. Mobile Comput.,
vol. 3, no. 3, pp. 258–271, Jul. 2004.

[35] W. Zhang and G. Cao, “DCTC: Dynamic convoy tree-based collab-
oration for target tracking in sensor networks,” IEEE Trans. Wireless
Commun., vol. 3, no. 5, pp. 1689–1701, Sep. 2004.

[36] Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang, “Location
tracking in a wireless sensor network by mobile agents and its data
fusion strategies,” Comput. J., vol. 47, no. 4, pp. 448–460, Apr. 2004.

[37] X.-H. Kuang, R. Feng, and H.-H. Shao, “A lightweight target-tracking
scheme using wireless sensor network,” Measurement Sci. Technol.,
vol. 19, no. 2, p. 025104, 2008.

[38] Q. Fang, F. Zhao, and L. Guibas, “Lightweight sensing and commu-
nication protocols for target enumeration and aggregation,” in Proc.
ACM Symp. on Mobile Ad Hoc Networking and Computing (MobiHoc),
2003, pp. 165–176.

YODER et al.: CLUSTER-BASED DISTRIBUTED FACE TRACKING IN CAMERA NETWORKS 2563

[39] F. Bouhafs, M. Merabti, and H. Mokhtar, “Mobile event monitoring
protocol for wireless sensor networks,” in Proc. Int. Conf. Advanced
Information Networking and Applications Workshops, 2007, vol. 1, pp.
864–869.

[40] W. Yang, Z. Fu, J.-H. Kim, and M.-S. Park, “An adaptive dynamic
cluster-based protocol for target tracking in wireless sensor networks,”
in Proc. Joint 9th Asia-Pacific Web Conf. Advances in Data and Web
Management, and 8th International Conf. Web-Age Information Man-
agemen, 2007, pp. 157–167.

[41] S. Soro and W. Heinzelman, “On the coverage problem in video-based
wireless sensor networks,” in Proc. Int. Conf. Broadband Networks,
Oct. 2005, vol. 2, pp. 932–939.

[42] S. Soro and W. Heinzelman, “A survey of visual sensor networks,” Adv.
Multimedia, vol. 2009, pp. 1–21, 2009.

[43] H. Medeiros, J. Park, and A. Kak, “Distributed object tracking using a
cluster-based kalman filter in wireless camera networks,” IEEE J. Sel.
Topics Signal Process., vol. 2, no. 4, pp. 448–463, Aug. 2008.

[44] Y. Tian, L. Brown, J. Connell, S. Pankanti, A. Hampapur, A. Senior,
and R. Bolle, “Absolute head pose estimation from overhead wide-
angle cameras,” in Proc. IEEE Int. Workshop on Analysis and Modeling
of Faces and Gestures, 2003, pp. 92–99.

[45] R. Lienhart and J. Maydt, “An extended set of Haar-like features for
rapid object detection,” in Proc. IEEE Int. Conf. Image Processing, Sep.
2002, vol. 1, no. 1, pp. 900–903.

[46] S. Julier and J. Uhlmann, “A new extension of the Kalman filter to non-
linear systems,” in Proc. Int. Symp. Aerospace/Defense Sensing, Simu-
lation and Controls, 1997, vol. 3068, pp. 182–193.

[47] A. Sankaranarayanan and R. Chellappa, “Optimal multi-view fusion
of object locations,” in Proc. IEEE Workshop on Motion and Video
Computing, Jan. 2008, pp. 1–8.

[48] H. Medeiros, J. Park, and A. Kak, “A light-weight event-driven pro-
tocol for sensor clustering in wireless camera networks,” in Proc. ACM/
IEEE Int. Conf. Distributed Smart Cameras, Sep. 2007, vol. 2, no. 4,
pp. 203–210.

[49] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach
Featuring the Internet, 3rd ed. Reading, MA: Addison-Wesley, 2005.

[50] W. Zhao, R. Chellappa, P. Phillips, and A. Rosenfeld, “Face recog-
nition: A literature survey,” ACM Comput. Surv., vol. 35, no. 4, pp.
399–458, 2003.

[51] Y. Sheikh, O. Javed, and M. Shah, “Object association across multiple
cameras,” in Multi-Camera Networks: Principles and Applications, H.
Aghajan and A. Cavallaro, Eds. New York: Elsevier, 2009, ch. 17,
pp. 415–434.

[52] N. Lynch, Distributed Algorithms. San Mateo, CA: Morgan Kauf-
mann, 1997.

[53] P. Phillips, H. Wechsler, J. Huang, and P. Rauss, “The FERET database
and evaluation procedure for face-recognition algorithms,” Image Vis.
Comput., vol. 16, no. 5, pp. 295–306, 1998.

[54] V. Blanz and T. Vetter, “A morphable model for the synthesis of 3-D
faces,” in Proc. ACM SIGGRAPH Conf. Computer Graphics, 1999, pp.
187–194.

[55] V. Ferrari, T. Tuytelaars, and L. Van Gool, “Real-time affine region
tracking and coplanar grouping,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2001, vol. 2, pp. 226–233.

[56] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
24, no. 5, pp. 603–619, May 2002.

[57] P. Perez, C. Hue, J. Vermaak, and M. Gangnet, “Color-based proba-
bilistic tracking,” in Proc. Eur. Conf. Computer Vision, 2002, vol. 1,
pp. 661–675.

[58] K. Nummiaro, E. Koller-Meier, and L. V. Gool, “An adaptive color-
based particle filter,” Image Vis. Comput., vol. 21, no. 1, pp. 99–110,
Jan. 2003.

Josiah Yoder received the B.S. CompE degree from
Rose-Hulman Institute of Technology, Terre Haute,
IN, in 2005 and is currently pursuing the Ph.D. de-
gree in the School of Electrical and Computer Engi-
neering, Purdue University, West Lafayette, IN.

His research interests include computer vision,
machine learning, human-computer interaction, and
distributed computing.

Henry Medeiros received the B.E. and M.S. degrees
in electrical engineering from the Federal University
of Technology, Parana, Brazil, in 2003 and 2005, re-
spectively, and is currently pursuing the Ph.D. de-
gree in the School of Electrical and Computer Engi-
neering, Purdue University, West Lafayette, IN.

His current research interests include sensor net-
works, computer vision, and embedded systems.

Johnny Park received the B.S., M.S., and Ph.D. de-
grees from the School of Electrical and Computer En-
gineering, Purdue University, West Lafayette, IN, in
1998, 2000, and 2004, respectively.

He was a Principal Research Scientist at Purdue
University where he led a large research project
on distributed camera networks. He is currently
a Research Assistant Professor in the School of
Electrical and Computer Engineering at Purdue
University. His research interests span various topics
in distributed sensor networks, computer graphics,

computer vision, and robotics.

Avinash C. Kak is a Professor of electrical and
computer engineering at Purdue University, West
Lafayette, IN. His research and teaching include
sensor networks, computer vision, robotics, and
high-level computer languages. He is a coauthor of
Principles of Computerized Tomographic Imaging,
which was republished as a classic in applied mathe-
matics by SIAM, and of Digital Picture Processing,
which is also considered by many to be a classic in
computer vision and image processing. His recent
book Programming with Objects (Wiley, 2003) is

used by a number of leading universities as a text on object oriented program-
ming. His latest book Scripting with Objects, also published by Wiley, focuses
on object-oriented scripting. These are two of the three books for an “Objects
Trilogy” that he is creating. The last, expected to be finished sometime in 2010,
will be titled Designing with Objects.

