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Abstract This paper presents a novel resource-aware framework for the implementation
of distributed particle filters in resource-constrained wireless camera networks (WCNs).
WCNs often suffer from communication failures caused by physical limitations of the com-
munication channel as well as network congestion. Unreliable communication degrades the
visual information shared by the cameras, such as visual feature data, and consequently
leads to inaccurate vision processing at individual camera nodes. This paper focuses on
the effects of communication failures on object tracking performance and presents a novel
communication resource-aware tracking methodology, which adjusts the amount of data
packets transmitted by the cameras according to the network conditions. We demonstrate
the performance of the proposed framework using three different mechanisms to share
the particle information among nodes: synchronized particles, Gaussian mixture models,
and Parzen windows. The experimental results show that the proposed resource-aware
method makes the distributed particle filters more tolerant to packet losses and also more
energy efficient.
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1 Introduction

Along with an increasing demand on networked cam-
era applications such as security and surveillance, the
recent advances of wireless camera hardware, e.g.,
Imote2 (Nachman et al. [2008]) equipped with a cam-
era, has brought on much interest in the development
of network-based computer vision algorithms, especially
object tracking algorithms for wireless camera networks
(WCNs). Previously, in Medeiros et al. [2007], we in-
troduced an event-driven camera clustering protocol for
collaborative object tracking in camera networks. We
also presented a Kalman filter based object tracking ap-
proach in a wireless network of multiple cameras using
the clustering protocol in Medeiros et al. [2008a]. How-
ever, even though the tracking algorithm was designed
to run in WCNs, it did not explicitly account for the ef-
fects of communication failures, network congestion, and
computational load on the performance of more sophis-
ticated collaborative tracking methods.

A number of previous works (Coates [2004], Sheng
and Hu [2005], Huang et al. [2008]) on wireless sen-
sor networks have presented object tracking algorithms
which consider constraints related to sensor hardware
such as low computational and communication capabil-
ities. These works proposed distributed tracking meth-
ods for wireless sensor networks, which perform com-
plicated tracking processing by spreading the compu-
tational load to local network nodes. They also pre-
sented several mechanisms to reduce the amount of data
communication, e.g., incorporating data compression or
parametric data representation of the communication
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data for the distributed tracking systems. Although these
algorithms were not especially designed for networks of
wireless cameras, they showed tracking algorithm imple-
mentation methodologies under such hardware limita-
tions.

Besides the computational hardware constraints, far
too little attention has been paid to communication and
networking issues, such as communication channel char-
acteristics and network traffic, in the design of object
tracking methods for WCNs. These communication and
network issues are even more critical in a WCN because
vision applications tend to generate heavy network traffic
and communication failures (Shin et al. [2011]). Specif-
ically, communication failures degrade the information
shared by local sensor nodes for collaborative tracking
and have severe effects on object tracking performance.

This paper focuses on the effects of communication
failures on object tracking performance and presents
a communication resource-aware tracking methodology,
which adjusts the amount of data packet transmission
according to the network conditions. In this paper, valid
communication packets, which are not dropped in data
communications, are considered as an available commu-
nication resource for distributed tracking. Our approach
allows sensor nodes to consume communication energy
efficiently and reduces tracking performance degradation
due to communication failures.

For our implementation we employed a widely used
object tracking approach, the particle filter, using the
clustering algorithm in Medeiros et al. [2007] as the un-
derlying framework for collaborative processing. The key
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features of our system are as follows: (1) particle filtering
is performed by dynamic clusters of cameras in a dis-
tributed manner, and (2) the amount of data represent-
ing particle probabilities is adaptively adjusted based on
the conditions of the network on which the proposed
tracker operates.

This paper begins by discussing design challenges im-
posed by WCNs in details in Section 2. It then goes on
to introduce the proposed distributed particle filtering
framework, which is the main building block of our im-
plementation, in Section 3. The implementation of the
resource-aware and distributed particle filter for cluster-
based WCNs is described in Section 4. Experimental re-
sults are shown in Section 5 and Section 6 concludes the
paper.

2 Challenges in Wireless Camera Networks

Design specifications for computer vision algorithms
such as object tracking for WCNs are constrained by the
characteristics of the camera node hardware, communi-
cation channel, network topology, network traffic, etc. In
this section, we review the issues which need to be con-
sidered when developing vision algorithms for WCNs.

Let us first consider design challenges caused by hard-
ware. Wireless smart cameras consisting of sensing, data
processing, and communication units impose constraints
on image quality, computational complexity of the vision
algorithm, and data communication bandwidth. This
is particularly true when severely resource-constrained
mote-based embedded systems such as the Imote2 are
utilized as wireless smart cameras. Computational lim-
itations prevent smart camera systems from executing
complicated vision algorithms, including most current
state-of-the-art approaches. Low communication band-
width and limited transmission energy available in a sen-
sor node make it difficult to transmit raw image data
and even sets of visual feature data. We can consider
lightweight and distributed computer vision processing
as one of the most promising approaches for reducing
the computational burden in individual nodes. However,
it is crucial to develop distributed methods that require
only a small amount of data communication.

WCNs often suffer from unreliable communication, as
wireless communication channels suffer from effects such
as Rayleigh fading and inherently impose packet losses
(Rappaport [2001]). Unreliable communication causes
data losses and degrades the overall quality of the re-
ceived visual information, consequently leading to inac-
curate vision processing at the camera nodes. Hence, in
designing computer vision algorithms for WCNs, it is
necessary that the distributed vision processing be ro-
bust to imperfectly communicated data.

In applying a vision task for WCNs, it is also impor-
tant to consider mechanisms for collaborative processing.
A cluster-based approach as suggested in Medeiros et al.
[2007, 2008a] allows camera networks to work collabo-
ratively. This collaborative processing causes additional
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Figure 1: Typical characteristics of wireless network
traffic. (a) throughput vs. number of transmitted packets
and (b) packet loss rate vs. transmitted packets.

data traffic on the clustered nodes when an event of in-
terest is detected by a cluster. Intensive data traffic in
a cluster tends to cause packet collisions and additional
packet losses, and has a degrading effect on the perfor-
mance of the vision tasks. Fig. 1 shows typical through-
put and packet loss rate curves in wireless networks. As
shown in Fig. 1(a), there is a limit to the throughput
that can be obtained by the network. This is essentially
caused by the fact that, as shown in Fig. 1(b), the packet
loss rate increases sharply as more packets are transmit-
ted in the network.

Data congestion and data loss are handled, in gen-
eral, by reliable transport protocols, quality of service
(QoS) mechanisms or by over-provisioning network ca-
pacity. Transport protocols such as TCP, however, are
not suitable for delay sensitive applications, e.g., real
time tracking applications, because such protocols as
well as scheduling-based congestion control protocols can
cause excessive latency (Khan et al. [2012]). An approach
of over-provisioning network bandwidth for the expected
peak traffic load is not usually applicable to resource con-
strained wireless camera nodes either, since the nodes
have tightly limited hardware capabilities. In a WCN
in which network capacity is limited, data loss during
communication is inevitable. Vision applications for the
wireless network need to be dynamically adaptable un-
der varying traffic conditions, for example, by controlling
the amount of data transmitted without exceeding the
available bandwidth in the network.

3 Distributed Particle Filtering Algorithms

In the particle filtering procedure, probabilities are ap-
proximated with discrete particle samples. Many previ-
ous works showed that this discrete approximation can
effectively represent object probabilities for single cam-
era based object tracking (Isard and Blake [1998], Perez
et al. [2002], Nummiaro et al. [2002]). For distributed
particle filtering using multiple cameras, each camera
computes its object probability locally, and the global
object probability is obtained by fusing the local ob-
ject probabilities of the camera nodes. In this case, how-
ever, the discrete nature of the method requires particle
sample synchronization in order to compute the joint
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Figure 2: Particle synchronization problem to compute
a joint probability. The top-right plot shows the over-
lapped local probabilities and the bottom-right plot il-
lustrates the multiplied probability of the two local prob-
abilities. In the global probability plot, the black dot-
ted line indicates the desired probability density and the
solid green line shows the global probability computed
by the multiplication of two asynchronous discrete local
probabilities.

(global) probability (Coates [2004], Ridley et al. [2004],
Ong et al. [2006b, 2008]). Note that we use the term syn-

chronization to describe the fact that all local particle
sets have the same support points as defined in Coates
[2004]. Fig. 2 shows the synchronization problem when
two different camera nodes must build a joint probabil-
ity. In the figure, each vertical bar represents a weighted
particle sample. As shown on the left side of the figure,
local probabilities corresponding to asynchronous parti-
cles from different cameras, which have different support
points in their probability representations, lead to inac-
curate joint probability estimates. Furthermore, as the
erroneous probability propagates frame by frame, it de-
teriorates the recursive distributed particle filtering and
causes severe tracking performance degradation. In dis-
tributed particle filter implementations, one of the main
challenges is to make all the camera particles synchro-
nized (Coates [2004], Ridley et al. [2004], Ong et al.
[2005, 2006a]).

We consider two approaches for handling the parti-
cle synchronization issue. The first approach, which is
an academic exercise to show the effects of perfect par-
ticle synchronization, synchronizes all local particles by
forcing the local random number generators to use the
same random seed. The second and more practical ap-
proach is to convert discrete probabilities to continuous
forms that do not require synchronization. We will refer
to the first approach as synchronized particle filtering,
and to the second as probability conversion based parti-

cle filtering. Before describing these two approaches, we
first introduce a general multiple camera particle filter-
ing framework, which lays the groundwork for our dis-
tributed particle filter implementations.
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Figure 3: Overview of a multiple camera based object
tracking system.

3.1 Multiple Camera Particle Filter

Given L cameras, we denote the observation random vec-
tor from the ith camera at time t as Yi,t and its real-
ization as yi,t. The random process of an object state at
time t is denoted as Xt and its realization as xt. Fig. 3
illustrates the overview of a multiple camera based ob-
ject tracking system. In the figure, yi,t represents an ex-
tracted object feature, e.g., a color histogram, from an
image captured at the ith camera at time t. The dynamic
model of the object is defined by a state process model:

Xt+1 = ft(Xt,Ut). (1)

The observation model, assuming the observations are
independent given the state, is defined as

Y1,t = h1,t(Xt,V1,t)

...

YL,t = hL,t(Xt,VL,t), (2)

where Ut and Vi,t are independent and identically dis-
tributed (i.i.d.) white noise processes, and ft and hi,t are
assumed to be known functions. Also, each observation
model can be characterized in probability by the associ-
ated likelihood

Yi,t = hi,t(Xt,Vi,t) ⇔ p(yi,t|xt). (3)

Then, the likelihood probability density function (PDF)
given all the observations has the form

p(yt|xt) =

L
∏

i=1

p(yi,t|xt), (4)

where yt = ((y1,t)
T , · · · , (yL,t)

T )T .
Fig. 4 shows the graphical model of the dependencies

between the object state and the L camera observations.
The graphical model illustrates the evolution of the sys-
tem over time as a hidden Markov dynamic model. The
directed link from xt−1 to xt represents the state tran-
sition process in Eq. (1) with its associated probability,
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Figure 4: Dynamic Markov model for multiple observa-
tion based tracking.

Algorithm 1 Multiple observation based particle filter.

Given: Random measure of previous posterior PDF,

{x̃
(k)
t−1,

1
K
}Kk=1.

Given: Observations at time t, y1,t, · · · ,yL,t.
Output: Random measure of current posterior PDF,

{x̃
(k)
t , 1

K
}Kk=1.

Output: MMSE estimate of current state, E(Xt|y0:t).

1: Do sampling: x
(k)
t = ft(x̃

(k)
t−1) + ut.

2: Compute (local) likelihood weights:

w
(k)
i,t = p(yi,t|x

(k)
t ).

3: Compute joint (global) likelihood weights:

w
(k)
t =

∏L

i=1 w
(k)
i,t .

4: Compute MMSE estimate:
E(Xt|y0:t) =

∑K

k=1 w
(k)x(k) .

5: Do resampling:
{

x̃
(k)
t , 1

K

}K

m=1
⇐ {x

(k)
t , w

(k)
t }Kk=1.

p(xt|xt−1). The directed link from xt to yi,t represents
the local observation process at the ith camera in Eq.
(3).

Particle filtering can be implemented through sev-
eral approaches, such as sequential importance sampling
(SIS) (Gordon et al. [1993], Isard and Blake [1998]) and
sequential importance resampling (SIR) (Gordon et al.
[1993]). In this work, the SIR particle filter is utilized
because it is simple, avoids the particle degeneration
problem, and is commonly used in many visual object
tracking applications. At each time instant, a tracking
result is obtained by the minimum mean squared error
(MMSE) estimate of the target state. Alg. 1 describes
the SIR particle filter utilizing multiple independent ob-
servations, where K is the number of particles. In Alg.

1, x
(k)
t and x̃

(k)
t are the kth particle and resampled par-

ticle samples at time t, respectively. A random measure,
{x(k), w(k)}Kk=1, represents a probability in which

p(x) ≈
K
∑

k=1

w(k)δ(x− x(k)). (5)

After resampling, all the particles x̃
(k)
t have the same

probability 1
K
, but there is a larger concentration of par-

ticles in regions of higher probability.

3.2 Synchronized Particle Filter

As shown in Alg. 1, the collaborative work of the mul-
tiple observation based particle filter is carried out by

Algorithm 2 Synchronized particle filter at node i.

Given: A network with L sensors.

1: Do sampling with a common random seed.
2: Compute local likelihood weights:

w
(k)
i,t = p(yi,t|x

(k)
t ).

3: Transmit local random measure (weights):

{w
(k)
i,t }

K
k=1.

4: Receive other sensors’ random measures (weights):

{w
(k)
j,t }

K
k=1, j 6= i.

5: Compute joint global weights: w
(k)
t =

∏L

j=1 w
(k)
j,t .

6: Compute posterior PDF.
7: Compute MMSE estimate.
8: Do resampling with the same random seed.

computing the joint likelihood weights w
(k)
t . Let us say

the kth weight of the ith camera, w
(k)
i,t , represents the

likelihood at the kth support point, x
(k)
i,t . The kth sup-

port points of all cameras should be the same to obtain
the joint probability by the multiplication of all camera
weights. If any of the local likelihood weights have dif-
ferent support points, the multiplication of local weights
does not guarantee the correct joint probability.

In the synchronized distributed particle filter (Farah-
mand et al. [2011]), all local particle filters are synchro-
nized to have the same support points. To make all cam-
era particles synchronized, all cameras are restricted to
use a common random seed to initialize the random num-
ber generators responsible for the sampling and resam-
pling processes, which is equivalent to operating all local
cameras with a single set of particles. When all local par-
ticle filters are synchronized with the same random seed,
multiple observation based particle filtering can be ac-
complished in a distributed way by communicating only
local weights. Alg. 2 shows the general procedure of the
synchronized particle filter at a given node.

3.3 Probability Conversion Based Particle Filter

When the synchronized particle filter is utilized in a cam-
era network, the amount of data transmitted by a camera
node is solely dependent upon the number of particles.
For networks that have a tight communication band-
width, it is indispensable that all nodes operate with
a small number of particles to prevent tracking perfor-
mance degradation. Also, when an event breaks the par-
ticle synchronization, e.g. a failure to share the seed due
to communication loss, the multiple node collaboration
cannot take place properly, which deteriorates the track-
ing performance. Hence, in many cases, it is preferable to
encode the probability representation into a continuous
form that is independent of the number of particles and
does not require particle synchronization. Gaussian mix-
ture model (GMM) (Ma and Ng [2006], Zuo et al. [2006],
Gu [2007], Song et al. [2009], Gao et al. [2009], Huang
et al. [2008], Sheng et al. [2005]) and Parzen (Ridley et al.
[2004], Ong et al. [2005, 2006b, 2008]) based probability
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conversion methods were proposed for converting parti-
cle probabilities into continuous forms. In this section,
we show the derivation of a distributed particle filtering
framework using the aforementioned probability conver-
sion approaches, which will be utilized for the proposed
tracking system.

For convenience of presentation, we first define some
additional notation before describing the probability
conversion based particle filters. Let us say Γ(xt) is the
prior PDF, p(xt|y0:t−1), in the prediction step

Γ(xt) , p(xt|xt−1)p(xt−1|y0:t−1). (6)

Additionally, let us denote a local posterior PDF con-
structed from a local likelihood PDF at the ith node
(camera) as ∆i(xt):

∆i(xt) ,
1

Z
p(yi,t|xt)Γ(xt), (7)

where Z is the normalization constant. Then, the global
posterior probability can be computed at camera i in an
L camera network as

p(xt|y0:t) = ∆i(xt)

L
∏

j 6=i

p(yj,t|xt). (8)

For all j 6= i, the local likelihood p(yj,t|xt) can be com-
puted at node i if the posterior ∆j(xt) and the prior
PDF Γ(xt) are known by node i, since

p(yj,t|xt) ∝
∆j(xt)

Γ(xt)
. (9)

By exchanging the local posterior PDFs, ∆j(xt), each
node can compute the likelihoods of the other cameras
using Eq. (9), and then build the global posterior PDF
using Eq. (8). This procedure effectively allows for object
tracking to be performed in a distributed manner.

Assuming we have a global random measure

{x̃
(k)
i,t−1,

1
K
}Kk=1 of the previous global posterior PDF at

the ith camera, we can compute the prior PDF at the ith

camera by the following sampling procedure:

x
(k)
i,t = ft(x̃

(k)
i,t−1) + ui,t, k = 1, · · · ,K, (10)

Γi(xt) ≈
1

K

K
∑

k=1

δ(xt − x
(k)
i,t ), (11)

where Γi(xt) is the prior PDF at the ith camera. Note
that Γi(xt) is equivalent to Γ(xt) for all i, since all
Γi(xt) represent the same prior PDF with different sup-
port points (recall that in the probability conversion ap-
proaches we no longer require synchronized particles).
The local likelihood weights at camera i are formed as

w
(k)
i,t =

1

Z
p(yi,t|x

(k)
i,t ), (12)

where Z is the normalization constant. Then, the local
posterior PDF, which is characterized by the random

measure {x
(k)
i,t , w

(k)
i,t }

K
k=1, is expressed as

∆i(xt) ≈
1

K

K
∑

k=1

w
(k)
i,t δ(xt − x

(k)
i,t ). (13)

After computing the local posterior PDF, it is neces-
sary to convert this discrete local posterior PDF form
into a continuous representation. In the GMM represen-
tation, the local posterior PDF is converted to an equally
weighted random measure by the resampling process;
then GMM parameters (mixture component weights,
means, and variances) are computed to form the GMM
representation in which

∆i(xt) ≈
1

Zc

NGMM
∑

n=1

c
(n)
i,t N (xt −m

(n)
i,t ,Σ

(n)
i,t ), (14)

where Zc is the normalization constant, NGMM is the

number of GMM mixture components, c
(n)
i,t is the nth

mixture component weight, and N (m,Σ) is a Gaussian
PDF with mean m and variance Σ.

An alternative approach to represent the particles us-
ing a continuous distribution is through a Parzen win-
dow representation. For Parzen form conversion, we draw
NPZ samples {x̄(n)}NPZ

n=1 from the local posterior PDF.

Then, we have the random measure {x̄
(n)
i,t ,

1
NPZ

}NPZ

n=1 that
is directly transformed to a continuous PDF represen-
tation. Note that the number of samples NPZ does not
need to be the same as the number of particles K to
represent the local posterior PDF in continuous form. In
fact, the continuous PDF representation of particle sam-
ples using Parzen windows requires significantly fewer
samples than the corresponding discrete approximation,
i.e., NPZ ≪ K. The continuous form of the local poste-
rior PDF from the samples is expressed as

∆i(xt) ≈
1

Zk

NPZ
∑

n=1

Pi(xt − x̄
(n)
i,t ), (15)

where Zk is the normalization constant and Pi(·) is a
Parzen’s kernel.

After the conversion to continuous form of the
local posterior PDF, each camera exchanges the

Parzen’s samples {x̄
(n)
i,t }

NPZ

n=1 or the GMM parame-

ters {c
(n)
i,t ,m

(n)
i,t ,Σ

(n)
i,t }

NGMM

n=1 . Then, the local likelihood
weights of other nodes are computed at the support
points of the ith camera prior PDF as shown in Eq. (9),

with ∆j(x
(k)
i,t ) given by Eqs. (14) or (15), i.e.:

w
(k)
j,t ,

∆j(x
(k)
i,t )

Γ(x
(k)
i,t )

, for j ∈ {1, · · ·L}. (16)

Then, the global likelihood weight can be computed as

w
(k)
t =

∏L

j=1 w
(k)
j,t

∑K

k=1

∏L

j=1 w
(k)
j,t

. (17)

The new random measure, {x
(k)
i,t , w

(k)
t }Kk=1, characterizes

the global posterior PDF. Finally, by applying resam-
pling, each camera obtains the equally weighted random

measure {x̃
(k)
i,t ,

1
K
}Kk=1 for the next estimation. The de-

tailed algorithm of the cluster-based probability conver-
sion based particle filter is shown in the next section.
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4 Resource-Aware Distributed Particle Fil-

ter

When developing a distributed tracking method, it is im-
portant to maximize the tracking system efficiency under
given resource constraints such as communication band-
width, processor’s computational power, and energy con-
sumption. Let us consider the constraints that affect the
tracking algorithm design and application. While avail-
able communication bandwidth is dependent on network
traffic, computational capacity for running a tracking al-
gorithm is specified by hardware, which can be treated,
to a great extent, as a static resource. Hence, the number
of particle samples, which is the main factor influencing
computational power consumption, can be set as a pre-
assigned value according to the hardware specification.
The computational resources required for carrying out a
tracking algorithm typically do not change significantly
over the course of tracking. Communication resources,
on the other hand, are much more dynamic.

In this paper, we consider dynamically available
communication resources and propose a resource-aware
method, which reduces communication failures thereby
improving the distributed tracking performance. Even
though existing network protocols for wireless sensor net-
works, such as STCP (Iyer et al. [2005]), Fusion (Hull
et al. [2004]), CODA (Wan et al. [2003]), and PCCP
(Wang et al. [2006]), control traffic congestion and re-
duce the chance of communication failures by adjust-
ing the data transmission rate, these methods do not
affect the number of data packets generated by a sen-
sor node. Instead, they control the transmission rate of
queued data. The proposed resource-aware method com-
putes the number of communication packets that are
available for data transmission at a given time according
to the network data traffic conditions and hence allows
the particle filter to dynamically adjust the quality (res-
olution) of the tracking data to be communicated.

In this section, we introduce a novel distributed par-
ticle filter approach that is based on a resource-aware
method for cluster-based WCNs. We utilize the dynamic
clustering protocol in Medeiros et al. [2007] as the col-
laborative processing framework for our implementation.
The clustering protocol describes a mechanism to form
clusters for camera collaborations. Let us say a cam-
era cluster is formed with the purpose of tracking an
object so that a camera node in the cluster is elected
as the cluster head and the other camera nodes are as-
signed as cluster members. As described in Medeiros
et al. [2007, 2008a], we assume that cluster members are
one hop neighbors of the cluster head but are not nec-
essarily within single hop communication range of one
another. In this environment, the cluster head estimates
the global posterior probability of the target object by
combining the local information transmitted from mem-
ber cameras. Additionally, the cluster head broadcasts
the joint posterior probability to its members, so that
all the cluster members can perform the object tracking

cluster 

cluster  
member 1 

cluster  
member L 

cluster  
head 

camera 
node k 

camera 
node j 

broadcast  
global prob. 

send  
local prob. 

camera 
node i 

send  
local prob. 

Figure 5: Data communication in cluster-based dis-
tributed particle filter.

task with the same global information. An overview of
the cluster-based tracking approach is shown in Fig. 5.

4.1 Resource-Aware Packet Allotment

Under the assumption that tracking accuracy increases
with the number of observations, tracking performance
can be maximized when we utilize the information pro-
vided by all the members of a cluster. However, if we
allow a large number of cluster members to transmit in-
formation at the maximum attainable data packet load,
then the data traffic within the cluster increases, which
may cause severe data loss, as mentioned in Section 2.

In this section, we present a resource-aware method
that recognizes the data traffic conditions and computes
the optimal amount of data that should be transmitted
in a cluster. The optimal data packet load is obtained by
maximizing the total amount of data transmitted in a
cluster given the maximal allowed packet loss rate. This
procedure also confines the energy waste level of data
transmission to the user-defined missing rate when trans-
mitting local data with the optimal data packet load.

Let us say that R is the total data packet load, i.e.
the total number of packets containing particle weights,
Parzen samples or GMM parameters in a frame, and M
is the packet loss rate. Then, the plot in Fig. 1 (b) can
be expressed as a function M(R) shown in Fig. 6. We
obtain the optimal data packet load, Ropt, by solving the
following problem:

Ropt = max{R(M)} (18)

s.t. M < Mmax,

where R(M) is the inverse function of M(R), and Mmax

is a user-defined packet loss rate. When M(R) is a mono-
tonically increasing function as shown in Fig. 6, R(M)
also becomes a monotonically increasing function. Then,
the solution Ropt is in fact R(Mmax). However, the rate
function R(M) is generally not available in practice but
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(# of packets) 

packet loss rate 

 

   

 

 

Figure 6: Optimal data packet load point in the packet
loss rate function.

the packet loss rate can be measured at each time frame
as

M(RTX) = (RTX −RRX)/RTX , (19)

where RTX and RRX are the number of transmitted and
received packets, respectively. Thus, it is preferable to
re-formulate the problem using the packet loss rate func-
tion.

Since M(Ropt) = Mmax as described in Fig. 6, we can
re-formulate the optimization problem in Eq. (18) to find
the optimal data packet load, Ropt, for M to be our
target value, Mmax. Using a convex cost function such
as a squared difference function, the optimal data packet
load problem can be expressed as

Ropt = argmin
{

(M(R)−Mmax)
2
}

(20)

s.t. 0 < R < Rmax,

where Rmax is the data packet load for which all the data
is missed (i.e., Mmax becomes 1). We assume that as R
increases, the packet loss rate monotonically increases as
in (Zhao and Govindan [2003]):

M(Ropt − δ) < M(Ropt) < M(Ropt + δ), (21)

where δ is a small number. Then, the cost function
(M(R)−Mmax)

2 becomes a unimodal function, which
has a single optimum. Hence, the minimizer Ropt can be
obtained by applying a gradient descent method (Chong
and Zak [2008]) and the iterative solution is

R
(t+1)
opt = R

(t)
opt − µt∇t, (22)

where ∇t = M ′(R
(t)
opt)(M(R

(t)
opt)−Mmax), µt is the step

size of the iteration, and µt > 0. Since we cannot ac-
cess the derivative of the packet loss rate function, M(·),

we assign µt as βt/M
′(R

(t)
opt), where βt > 0. Note that

M ′(R
(t)
opt) is positive since the packet loss rate monoton-

ically increases in the operational range such that 0 <
R < Rmax. Then the iterative equation becomes

R
(t+1)
opt = R

(t)
opt − βt(M(R

(t)
opt)−Mmax). (23)

Algorithm 3 Packet allotment procedure.

Given: the target packet loss rate, Mmax, the minimum
data packet load, Rmin, and the data packet load at t,

R
(t)
opt.

1: Count received data packets: R
(t)
RX .

2: Compute the packet loss rate:

M(R
(t)
opt) = (R

(t)
opt −R

(t)
RX)/R

(t)
opt.

3: Update data packet load:

R
(t+1)
opt = R

(t)
opt + β(M(R

(t)
opt)−Mmax).

4: Compute individual node data packet load:

R
(t+1)
l = max

{⌊

R
(t+1)
opt /L

⌋

, Rmin

}

.

When we assign βt as a constant, we have the following
condition for convergence (Chong and Zak [2008])

β < M ′(R). (24)

This condition indicates that β should be a small number
if the slope of M(Rmax) is small, and that there is a limit
in the rate of change of M(R) that the system is capable
of handling.

Let us say the solution at the current frame, Ropt, is
the available communication resource in a cluster. It is
necessary to assign a proper data packet load for each
node, Rl, where

∑L

l=1 Rl = Ropt. One may utilize a rate-
distortion optimization approach (Cover and Thomas
[2006]), which assigns each node communication rate ac-
cording to the difference between the transmitted and
received probabilities of each node, caused by packet
losses. However, in hardware and bandwidth constrained
smart camera applications, it may not be feasible to
run the rate-distortion optimization process, since it re-
quires both monitoring the data packet loads of all nodes
and measuring their probability differences. Assuming
the communication channels and packet loss rates of all
camera nodes are approximately the same, we use a fair
packet allotment approach, which is

Rl = max

{⌊

Ropt

L

⌋

, Rmin

}

, (25)

whereRmin is a minimum packet load for data transmis-
sion, which prevents the rate from becoming zero. Note
that the floor operator,⌊·⌋, is used to ensure that the re-
sulting packet load is an integer value. Alg. 3 describes
the procedure of packet loss measurement and packet al-
lotment.

4.2 Cluster-Based Framework for Particle Filter

Tracking

In this section, we describe the proposed cluster-based
distributed particle filter implementations. Alg. 4 and
Alg. 5 illustrate the particle filtering procedures for the
cluster members and the cluster head, respectively. For
the sake of convenience, we divide the filtering proce-
dure of a node into three sub phases: pre-processing, data
communication, and post-processing.
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Algorithm 4 Cluster-based distributed particle filter at
the ith cluster member.
Given: the previous posterior PDF random measure,
{

x̃
(k)
i,t−1,

1
K

}K

k=1
and data packet load, R

(t−1)
l .

Pre-Processing

1: Do sampling: x
(k)
i,t = ft(x̃

(k)
i,t−1) + ui,t.

2: Compute local weights: w
(k)
i,t .

Data Communication

1: Convert local probability into continuous form ac-

cording to the data packet load R
(t−1)
l .

2: Transmit local probability to cluster head.
3: Receive global probability and the next data packet

load R
(t)
l from cluster head.

4: Reconstruct global posterior PDF (update weights):

w
(k)
t .

Post-Processing

1: Do resampling:
{

x̃
(k)
i,t ,

1
K

}K

m=1
⇐ {x

(k)
i,t , w

(k)
t }Kk=1.

Algorithm 5 Cluster-based distributed particle filter at
the cluster head.
Given: the previous posterior PDF random measure,
{

x̃
(k)
i,t−1,

1
K

}K

k=1

Pre-Processing

1: Do sampling: x
(k)
i,t = ft(x̃

(k)
i,t−1) + ui,t.

2: Compute local weights: w
(k)
i,t .

Data Communication

1: Receive local probabilities from cluster members.

2: Reconstruct local likelihood weights: w
(k)
j,t , j 6= i.

3: Compute joint global weights: w
(k)
t = w

(k)
i,t

∏L

j 6=i w
(k)
j,t

4: Compute data packet load for next frame according
to Alg. 3.

5: Transmit global probability and the data packet load
to cluster members.

Post-Processing

1: Do resampling:
{

x̃
(k)
i,t ,

1
K

}K

k=1
⇐ {x

(k)
i,t , w

(k)
t }Kk=1.

2: Compute MMSE estimate: E(Xt|y0:t).

In pre-processing and post processing, the nodes per-
form common particle filtering operations consisting of
sampling, computing object likelihoods, resampling, and
estimating the target position. At the data communica-
tion phase, the cluster head and cluster members carry
out different operations. First, cluster members prepare
for data communication by computing the amount of
data load according to Eq. (25) and, when applica-
ble, converting their probabilities into continuous forms
(e.g., Parzen samples or GMM parameters) according to
the data packet load; the number of Parzen samples or
GMM parameters to be transmitted is proportional to
the packet rate. Then the cluster head receives the local
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Figure 7: Distributed particle filter timing diagram.
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Figure 8: Score function for tracking result evaluation.

data from the cluster members and builds a joint proba-
bility. The cluster head also updates the total packet rate
of the cluster by inspecting the number of missed pack-
ets at the current frame, as described in Alg. 3. Then,
the cluster head broadcasts the global probability to the
cluster members, which execute their particle filters with
the received global information. The timing diagram of
the cluster-based distributed particle filter, as shown in
Fig.7, describes one cycle of processing, including image
capturing and data processing.

5 Experiments

In this section, we present experiments that demonstrate
the feasibility of the proposed method. We first describe
the evaluation metrics we utilize for analyzing the pro-
posed approaches. Then, the detailed experimental set-
ting, including parameters of the particle filters, commu-
nication payloads, and packet loss models are introduced
so that we can finally show the experimental results.

5.1 Evaluation Metrics

The proposed distributed tracking systems have two
main functionalities: One is object tracking based on par-
ticle filtering, and the other is packet allotment, which is
independent of the tracking mechanism. To evaluate the
performance of the object tracking methods, two metrics
are utilized, tracking error and score. In order to show
the performance of the resource-aware packet allotment
mechanism, the delivery energy efficiency metric is in-
troduced. These metrics are described in detail in the
following sections.
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5.1.1 Tracking Evaluation Metrics

To evaluate the performance of a visual tracking system,
a human visually verifies the tracking results by manu-
ally creating bounding circles or boxes surrounding the
objects being tracked at each image frame. When such
ground-truth data is available, the tracking performance
can be measured by tracking errors, which are computed
utilizing a root squared difference function between the
ground-truth data xgt and the tracking results xest:

error , ‖xest − xgt‖2 (26)

Eq. (27) shows the average tracking error (ATE) mea-
surement that we will utilize to evaluate tracking perfor-
mance.

ATE =

∑T

t=1 errort
T

, (27)

where t is the frame number and T is the total number
of frames. However, in this paper, we are interested in
measuring the accuracy and persistence of target track-
ing in a camera network. After a tracker loses track of
the target object, the algorithm may present erratic be-
havior. Hence, it is difficult to show the tracking per-
formance exclusively based on tracking errors, since the
errors could indicate largely different values depending
upon where the estimated tracks are lost. Here, we use
an additional measurement to evaluate tracking perfor-
mance. We measure to what extent a tracker tracks the
target object successfully. Successful tracking is mea-
sured with a scoring function, which is a thresholding or
decreasing function of distance between the target track
and the ground-truth at the tth frame. The average suc-
cess score is defined in Eq. (28).

ATS =

∑T

t=1 scoret
T

, (28)

where t is the frame number, T is the total number of
frames, and scoret is a thresholding or decreasing func-
tion of the distance between the target track and the
ground-truth at the frame t. Fig. 8 shows how the scoret
is assigned according to the Euclidean distance. When
we use a thresholding score shown as the red dotted
line, it assigns one if a tracking result is within a certain
range; otherwise it assigns zero to indicate tracking fail-
ure. When a decreasing function (blue lines) is utilized
as a tracking score, it penalizes tracking results accord-
ing to their accuracy. Hence, the tracking score can also
show the accuracy and success of target tracking.

To evaluate our tests, we set the distance threshold
as the target object width, w, and the scoring function
as a sigmoid type function as in Eq. (29).

score ,
1 + exp(−w/β)

1 + exp((d− w)/β)
, (29)

where β is a control parameter for the transition width
of the scoring function and d is the Euclidean distance

1 packet (12 bytes)

Synch 6 particle weights

GMM 1 set of GMM parameters

Parzen 3 Parzen samples

Table 1 Data payload in a packet.

between the estimated target position and the ground-
truth at a given frame. In our experiments, we set β as
w/5, as depicted in Fig. 8. As we can see, the threshold-
ing approach is just a special case when β = 0.

5.1.2 Delivery Energy Efficiency

In lossy networks, transmitted data packets are fre-
quently missed. The non-received packets also consume
transmission energy, which is essentially wasted. If a
tracker shows good tracking results with large packet loss
(typically under the situation that it transmits a very
large number of redundant packets), the tracking system
requires high cost and may not be suitable for wireless
systems. We measure the energy efficiency of delivered
packets using delivery energy efficiency (DEE), which
is defined as the non-wasted portion of the total trans-
mission energy. Let us say e is the energy required to
transmit a packet. Then, the total transmission energy
ETX is expressed as

ETX = NTX × e, (30)

where NTX is the number of transmitted packets. Sim-
ilarly, the amount of wasted energy ENR is computed
as

ENR = NNR × e, (31)

where NNR is the number of lost packets. Then, DEE
has the following form:

DEE ,
ETX − ENR

ETX

=
NTX −NNR

NTX

. (32)

We will utilize DEE as a measurement of energy effi-
ciency for tracking data communication.

5.2 Simulations and Experiments in a Wireless

Camera Network

In this section, simulated results using previously
recorded image sequences are carried out to analyze
the tracking performance of the proposed resource-aware
method. Then, real-time experiments are shown on a
WCN implementation.

5.2.1 Particle Filter Settings

In our experimental setup, we set the target state, xt,
at time t as the object position (xw, yw) in the world
coordinate plane:

xt = [xw, yw]
T . (33)
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(a)

(b)

Figure 9: Average packet loss under AVR simulator (a)
and packet loss models (b). (a) Red bars indicate stan-
dard deviations of the packet loss. (b) The black line
model is obtained from the AVR simulation and the red
and blue lines are set for a moderate and a severe loss
case for the resource-aware tracking test, respectively. In
the packet loss model 2, as the number of transmitted
packets increases, most transmitted packets are lost.

For the state process model, we utilize a linear transition
matrix corrupted by Gaussian noise:

xt+1 = Fxt + ut, (34)

where we set the identity matrix as the transition matrix,
F = I2×2, since, for simplicity, we do not accommodate
object velocity in the state vector. The transition noise,
ut, is set as a Gaussian noise model. Also, we consider
yt as the target object (or reference) feature at time t
and ht(xt) as the extracted feature at a support point
xt in the image at time t. In our implementation, we
use color histogram features as described in (Nummiaro
et al. [2002], Perez et al. [2002], Medeiros et al. [2008b,
2010]). We compute the object histogram at the object
position on the image coordinate, which is transformed
from the object position in the world coordinate frame by
the precomputed homography obtained from the camera

calibration information. The likelihood probability is set
to

p(yi,t|xt) =
1

Z
exp

(

−
d
(

hi,t(Hixt),yi,t

)

λ

)

, (35)

where Z is the normalization constant, Hi is the homog-
raphy between the world coordinate ground plane and
the ith camera image plane, λ is the observation noise
power, and d(x, y) is the Euclidean distance function
between x and y. Note that the distance can be com-
puted instead with the Bhattacharyya distance utilized
in (Nummiaro et al. [2002], Perez et al. [2002]) as shown
in (Hager et al. [2004]) or with any other suitable dis-
tance metric. The color histograms are computed in the
RGB color space with 38 bins in each dimension. The
noise level (power) was set as a fixed constant, λ = 0.06.

5.2.2 Communication Packet Payloads and Packet

Loss Models

In our implementation, we describe a floating point vari-
able such as a particle weight with 2-byte precision. As
for the size of the communication packets, we have cho-
sen to allow for 12 bytes of payload so that the parti-
cle information as well as additional 17 bytes of headers
required by lower level protocols (such as the cluster-
ing protocol) can be transmitted within a single TinyOS
packet, which has a default length of 29 bytes. For the
synchronized particle filter implementation, 6 particle
weights can be transmitted in a single packet, as a parti-
cle weight requires 2 bytes to be described. In the Parzen
particle filter implementation, 4 bytes are needed to de-
scribe a Parzen sample composed of x and y positions,
hence 3 Parzen samples are transmitted in a packet. A
set of GMM mixture parameters consists of 6 floating
point variables, which are a GMM component weight, x
and y positional means, and the variances and covariance
between x and y. This set of GMM parameters requires
12 bytes, and hence in the GMM implementation, a sin-
gle set of GMM parameters is loaded in a packet. Table
1 shows the summary of the different data payloads in a
packet.

We set the number of particlesK = 300 for the proba-
bility conversion based particle filter methods. However,
for the synchronized particle filter, the number of parti-
cles is determined by the number of packets available to
a local node. For example, when 10 packets are assigned
to a node for particle data communication, the number
of particles in the synchronized particle filter is 60 (10
multiplied by 6).

To obtain a packet loss model, the clustering
(Medeiros et al. [2007]) and the Parzen based tracking al-
gorithms with a sensing rate of 0.5 seconds were executed
under the Avrora (AVR) simulator (Titzer et al. [2005])
with the CSMA (carrier sense multiple access with col-
lision avoidance) protocol (IEEE [1998]). We varied the
numbers of packets per frame assigned to each node as
well as the number of cluster members in each cluster (2
to 7 cluster members, including the cluster head) so that
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(a)

(b)

(c)

Figure 10: Test image sequences. (a) Campus, (b)
PETS and (c) Lab sequences. The red image box indi-
cates the image captured at the cluster head; the small
yellow boxes in all images show the target object.

the total number of packets transmitted per frame varied
between approximately 0 and 80. Fig. 9 (a) shows the av-
erage packet loss of the simulations, which were repeated
30 times on each combination of number of packets per
frame and cluster members. Based on the simulation re-
sults, we created two packet loss models (shown in Fig.
9 (b)) to investigate the performance of the proposed
resource-aware approach. Note that the two models we
utilized induce more packet losses than the model ob-
tained from the AVR simulation. The purpose of the ad-
ditional packet losses is to account for potential sources
of communication failures that may not have been in-
cluded in the simulations. These models are supposed
to represent severe and moderate communication failure
scenarios in our experimental evaluation in the following
sections.

5.2.3 Simulated Experiments

We tested three multiple image sequence sets in our sim-
ulations: Campus (3 image sequences) (Ecole Polytech-
nique Federale de Lausanne [2008]), PETS (4 image se-
quences) (Reading University [2009]), and Lab (8 image
sequences) image sets. Examples of the publicly avail-
able Campus and PETS image sequences, which are cap-
tured in outdoor environments, are shown in Fig. 10 (a)
and (b), respectively. Fig. 10 (c) shows examples of the
Lab image sequences, which were captured at the Pur-
due Robot Vision Lab, an indoor environment. In each
image sequence set, the red boxes indicate the images
captured by the cluster heads. The target objects in the
image sequences are marked by a small yellow box. We

select the test image sequences in which all cameras have
common object views so that all the cameras take part
in the tracking process, one as the cluster head and the
others as cluster members. We assume that all cameras
are located in single hop communication range to the
cluster head. All of the tests were done under the same
transition dynamic model and observation noise level.
The experiments were carried out using two different
target packet loss rates, M = 0.1 and M = 0.2, for the
resource-aware distributed particle filters under the two
loss models described in Fig. 9 (b). For the non resource-
aware distributed particle filters, 4 to 10 packet loading
scenarios were tested under the same two loss models.
In these experiments, ATSs and ATEs are computed by
considering the tracking results of a centralized particle
filter as the ground-truth.

We first looked at the performance of the standard
distributed particle filters, in which the resource-aware
method is not employed. Fig. 11 shows the average track-
ing scores and the average tracking errors for the Cam-
pus, PETS, and Lab sequences under lossless packet
communication. All three distributed particle filters, the
synchronized, the GMM, and the Parzen approaches,
show reliable tracking performances. As the figure shows,
all ATSs are close to 1 and the ATEs are within few cen-
timeters, since the probability representations are not
subject to any degradation caused by dropped pack-
ets. As the number of assigned transmission packets in-
creases, the tracking performance does improve but not
noticeably (ATSs increase and ATEs decrease) as shown
in Fig. 11. Note that the three different approximations
of the object probability distribution cause a marginal
difference in error values.

However, when packet losses occur, the tracking per-
formances of the distributed particle filters are degraded.
Fig. 12 and 13 show the average tracking scores and the
average tracking errors for the Campus, PETS, and Lab
sequences under loss model 1 and 2. Fig. 14 and 15 depict
the corresponding delivery energy efficiencies and trans-
mitted and received packets. As the number of transmit-
ted packets in the network increases (from 4 to 10 pack-
ets), the number of lost packets also increases as shown
in Fig. 15. The synchronized particle filter shows that
it is extremely vulnerable to packet losses; the tracking
performance degrades rapidly as the number of lost pack-
ets increases (see Figs. 12 and 13). In the synchronized
particle filter, the collaborative processing, which con-
sists of computing the joint probability, requires parti-
cle synchronization. When data losses occur, the particle
weights in the lost support points become unavailable,
which leads to a distorted joint probability and incorrect
object track estimation. On the other hand, the GMM
and Parzen particle filters show robust performances to
lossy data communication. In the Campus and PETS se-
quence experiments, which utilized 3 and 4 cluster mem-
bers, the GMM and Parzen tracking algorithms present
around 90% tracking success rate (0.9 ATS) under the
packet loss model 1, in which the packet loss rates are
less than 30%. However, increasing the packet loss rate,
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Figure 11: Average tracking scores (ATSs) and average
tracking errors (ATEs) under lossless packet communica-
tion. (a), (c), and (e): ATS for Campus, PETS, and Lab
sequences. (b), (d), and (f): ATE for Campus, PETS,
and Lab sequences.

which happens in the Lab sequence experiments with
the packet loss models 1 and 2 and the PETS sequence
experiments with the packet loss model 2, the GMM par-
ticle filter shows degraded performances as shown in Fig.
12 (d), (e), and (f), as data traffic increases as shown
in Fig. 15 (d), (e), and (f). The Parzen particle filter
shows additional robustness with respect to the GMM
approach in at least one of these three severe scenarios
(plot (e)).

When the resource-aware method is applied to the
distributed particle filters, it confines the packet loss rate
to a pre-assigned level Mmax. For the synchronized par-
ticle filter, the resource-aware method does not improve
the tracking performance much, as it does not guaran-
tee lossless packet transmission but rather a certain rate
of packet loss, and the synchronized particle filter can-
not operate properly even under modest communication
failures. However, the resource-aware method drastically
improves the tracking performances of the GMM and the
Parzen distributed particle filters as shown in Fig. 12 and
13, and increases the packet delivery energy efficiencies
as shown in Fig. 14. For the most severe packet loss case,
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Figure 12: Average tracking scores (ATSs) for the three
test sequences. From top to bottom, each row shows
ATSs for Campus, PETS, and Lab sequences, respec-
tively. From left to right, each column depicts ATSs un-
der loss model 1 and 2, respectively.

shown in Fig. 15 (f), the resource-aware method still pre-
serves the requested packet loss rate and improves the
tracking performances of the GMM particle filter from
a mean ATS of 0.11 to an ATS of 0.52 and that of the
Parzen particle filter from a mean ATS of 0.04 to an ATS
of 0.74, as shown in Fig. 12 (f) (the mean ATS of the
non-resource aware particle filters is computed by aver-
aging the ATSs for 4 to 10 packet transmissions).

Selected object trajectories under loss model 1 and
2 are shown in Fig. 16 and 17, respectively. Note that
in the trajectory plots, the world plane is represented
in the x and y axes, and the frame number is indi-
cated in the z axis. As previously shown, the synchro-
nized particle filter shows high tracking errors even in
the presence of modest communication failures. There-
fore, the object trajectories estimated by the synchro-
nized particle filter are far deviated from the ground-
truth, and hence, to better visualize the performance of
the resource-aware method, we chose to plot only the
trajectories of the GMM and the Parzen particle fil-
ters in the trajectory plots. Fig. 16 and 17 show that
the estimated trajectories become significantly more sta-
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(f)

Figure 13: Average tracking errors (ATEs) for the three
test sequences. From top to bottom, each row shows
ATEs for Campus, PETS, and Lab sequences, respec-
tively. From left to right, each column depicts ATEs un-
der loss model 1 and 2, respectively.

ble when the resource-aware method is applied to the
GMM and the Parzen particle filters, confirming that the
resource-aware method improves the object tracking per-
formance, as previously shown in Fig. 12 (d) and (f). For
the most severe packet loss case (the Lab sequence test
with the loss model 2), since almost no data is received,
all the distributed particle filters lose track of the object,
as shown in Fig. 17 (e). The resource-aware method re-
duces the number of packets to be transmitted in this
case and it allows a certain portion of packets to be com-
municated (as shown in Fig. 15 (f)), thereby restoring
to a great extent the functionality of the GMM particle
filter and allowing the Parzen particle filter to operate
almost perfectly, as shown in Fig. 17 (f). Snapshots of
the tracking results are shown in Fig. 18.

To show a more concise and integrative view of the
distributed particle filter performances, we introduce a
new metric that combines the ATS and DEE metrics.
Fig. 19 shows the combined measure, which is computed
by multiplying the ATS and DEE. The resource-aware
methods show improved performances for the GMM and
Parzen particle filters when packet loss is higher as shown
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Figure 14: Delivery energy efficiencies (DEEs) for the
three test sequences. From top to bottom, each row
shows DEEs for Campus, PETS, and Lab sequences, re-
spectively. From left to right, each column depicts DEEs
under loss model 1 and 2, respectively.

in Fig. 19. Although the resource-aware methods tend to
present slightly better performance when Mmax = 0.1,
when packet loss is severe as in the case of the particle fil-
ters with 8 cluster members running under the loss model
2, the performances of the two resource-aware methods
(Mmax = 0.1 and Mmax = 0.2) does not show noticeable
difference as shown in Fig. 19 (f), since the best packet
loss rate that can be achieved by either resource-aware
method is limited to the minimal packet loss condition.
In this experiment, the achieved packet loss rates of both
resource-aware methods using Mmax = 0.1 and Mmax =
0.2 were approximately 0.28 packet loss rate (i.e., M =
0.28). Note that in the other experiments the resource-
aware method for the GMM and Parzen particle filters
with 0.2 maximum loss rate (Mmax = 0.2) show lower
values than with 0.1 maximum loss rate (Mmax = 0.1)
in the combined measure because although their ATSs
are comparable there is a difference of 0.1 between the
two maximum loss rates.

To understand how the performances of the particle
filters are affected by the number of nodes in the net-
work and by the amount of traffic generated by each
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Figure 15: Transmitted (TX) and received (RX) pack-
ets for the three test sequences. From top to bottom,
each row shows RX and TX packets for Campus, PETS,
and Lab sequences, respectively. From left to right, each
column depicts RX and TX packets under loss model 1
and 2, respectively.

node, we consider scenarios in which clusters consisted
of 3 to 8 members and the number of packets generated
by each cluster member varied from 4 to 10. For these
experiments, we used only the Lab sequences as they cor-
respond to the network with the largest number of cam-
eras and the greatest amount of overlap between camera
views. Fig. 20 shows the delivery energy efficiencies and
received packets. Note that packet losses and the packet
control mechanism of the resource-aware method are in-
dependent of the particle filters. Hence, we show common
DEEs and RX packets for all the distributed particle
filters in Fig. 20. The resource-aware method preserves
the DEEs of the distributed particle filters by monitor-
ing the rate of lost packets and adjusting the number of
data packets, whereas non-resource-aware particle filters
have degraded DEEs as they do not have any adaptive
mechanism for lossy communication environments.

Fig. 21 and 22 depict the tracking performances with
ATSs and ATEs. As the figures indicate, the resource-
aware methods perform significantly better than the
non-resource aware particle filters in the majority of the

80

100

120

140

160

100
200

300
400

0

50

100

yx

F
ra
m
e

(a)

80

100

120

140

160

100
200

300
400

0

50

100

yx

F
ra
m
e

(b)

-800

-600

-400

-800

-600

-400

0

50

100

yx

F
ra
m
e

(c)

-800

-600

-400

-800

-600

-400

0

50

100

yx

F
ra
m
e

(d)

100

200

300

200

400

600

0

50

100

150

yx

F
ra
m
e

(e)

100

200

300

200

400

600

0

50

100

150

yx

F
ra
m
e

(f)

Figure 16: Trajectories of estimated object positions
under the loss model 1 (unit: cm). (a), (c), and (e): Tra-
jectories of non resource-aware methods when 8 packets
per node were transmitted for the Campus, PETS, and
Lab sequences. (b), (d) and (f): Trajectories of resource-
aware methods when Mmax = 0.1 for Campus, PETS,
and Lab sequences. The blue, green, and black lines indi-
cate the object trajectories estimated by Parzen, GMM,
and centralized particle filters, respectively.

scenarios, especially when the number of cluster mem-
bers is higher (and consequently the network traffic is
heavier). Again, the synchronized particle filter cannot
benefit much from the resource-aware method. The ex-
periments shown in Fig. 21 (a) and (b) demonstrate that
the tracking performance is dependent on the number
of packet losses as shown in Fig. 20 (a) and (c). The
resource-aware method does not help the performance
much, since it keeps a certain level of packet loss rate as
shown in Fig. 20.

The GMM components are weighted as described in
Section 3.3. Therefore, data packets of the distributed
GMM particle filter are not equally important, since
a packet consists of a mixture weight. When highly
weighted packets are lost during communication, the
converted probability from the received packets repre-
sents the probability estimated by that node poorly,
which causes overall unreliable tracking. The experi-
mental results in Fig. 21 and 22 show a tendency that
higher packet loss rates caused by increasing the num-
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Figure 17: Trajectories of estimated object positions
under the loss model 2 (unit: cm). (a), (c), and (e): Tra-
jectories of non resource-aware methods when 8 packets
per node were transmitted for the Campus, PETS, and
Lab sequences. (b), (d) and (f): Trajectories of resource-
aware methods when Mmax = 0.1 for Campus, PETS,
and Lab sequences. The blue, green, and black lines indi-
cate the object trajectories estimated by Parzen, GMM,
and centralized particle filters, respectively.

ber of cluster members and packet transmissions degrade
the tracking performance of the GMM particle filter.
This tendency is explained by the fact that higher loss
rates increase the odds of dropping important packets.
The resource-aware method confines the packet loss rate,
which reduces the chance of missing highly weighted
packets. Hence, the performance of the GMM particle
filter is improved with the resource-aware method under
lossy communication environments. The GMM particle
filter shows better tracking performance with a smaller
maximummissing rate (Mmax = 0.1 in the experiments).

In the Parzen distributed particle filter, Parzen sam-
ples are packed into transmission packets. Communica-
tion failures cause packets to be dropped at random,
which is essentially equivalent to reducing the resolu-
tion of Parzen sampling since Parzen samples are gen-
erated by a random selection from the equally weighted
particles. Furthermore, Parzen samples are distributed
densely at the support points that have high particle
weights. When the resolution of the Parzen representa-

(a)

(b)

(c)

Figure 18: Tracking results of (a) Campus, (b) PETS,
and (c) Lab sequences using resource-aware method with
Mmax = 0.1 under the loss model 2. The red, green, blue,
and white boxes indicate the object tracks estimated by
the synchronized, GMM, Parzen, and centralized particle
filters, respectively. The tracking results were captured
at the cluster head.

tion is not at a critical level (i.e., the number of received
Parzen samples is not too small) to represent an object
probability, the Parzen particle filter can provide reliable
tracking performance. Hence, the Parzen particle filter
is less vulnerable to packet losses than the synchronized
and the GMM particle filters, as our experiments demon-
strate. In terms of tracking accuracy, the resource-aware
method does not improve the performance of the Parzen
particle filter much as shown in Fig. 21 (e) if packet loss
rate is not critical as shown in Fig. 20 (a). Note that the
resource-aware method enables a small number of packet
communications even in an extremely lossy environment
as shown in Fig. 20 (c), and the Parzen particle filter
takes advantage of the resource-aware method in this
case, as Fig. 21 (f) shows, especially when the number
of cluster members is more than 6. In general, even for
lower packet loss rates, the resource-aware method signif-
icantly increases the DEE without degrading the track-
ing performance of the Parzen particle filter, as shown
in Fig. 20 (a) and (c).

5.2.4 Experiments on a Wireless Camera Network

Testbed

The proposed resource-aware method was evaluated on
an Imote2-based real wireless camera network testbed as
shown in Fig. 23. The Robot Vision Lab (RVL) testbed
consists of 13 Imote2 nodes, shown in Fig.24 (a), and cov-
ers a doorway across three consecutive rooms where each
room size is roughly 20ft× 20ft. The sensing rate of the
camera nodes was set to capture a 320 by 240 image at
every 1.6 second; the extremely low sensing rate is due
to hardware limitations. The target object (an iRobot
Create with color markers), shown in Fig. 24 (b), was
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Figure 19: Average tracking scores (ATSs) with deliv-
ery energy efficiency (DEE) for the three test sequences.
From top to bottom row, each row shows ATS×DEEs for
Campus, PETS, and Lab sequences, respectively. From
left to right column, each column depicts ATS×DEEs
under loss model 1 and 2, respectively.

navigated on a pre-determined track (the ground-truth)
using a remote control. We compared the distributed
particle filter without the resource-aware capability us-
ing 2, 4, and 6 packet loads with the resource-aware
particle filter with Mmax = 0.2. The Parzen distributed
particle filter, which is robust to packet losses during
data aggregation at the cluster head, is applied to all the
implementations. The network protocol stack that sup-
ports the object tracking application is built with typi-
cal wireless sensor network protocols for realistic experi-
mental environments, which includes the energy-efficient
random-access MAC protocol T-MAC (Van Dam and
Langendoen [2003]) with 30% duty cycle. We also uti-
lized a dynamic camera clustering protocol (Medeiros
et al. [2007]) to enable mobile object tracking with static
wireless cameras.

As we demonstrated in the previous section, all the
implementations of the Parzen particle filters achieve
similar tracking performance as measured by ATS and
ATE. We can observe the same behavior in Fig. 25 (a)
and (b), which show the ATS and ATE measured in the
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Figure 20: Delivery energy efficiencies (DEEs) and RX
packets. (a) and (c): DEEs of 3 - 8 Lab sequences under
the loss model 1 and 2, respectively. (b) and (d): RX
packets for 3 - 8 Lab sequences under the loss model 1
and 2, respectively.

experiment on the testbed. As shown in Fig. 25 (d), as
more transmission packets are assigned per node, the
contention for medium becomes more severe, resulting
in increased packet losses. It is obvious that such packet
losses cause unnecessary energy consumption, and more
importantly the increased contention could potentially
cause the loss of more critical packets, such as the pack-
ets required for the operation of the clustering algorithm.
For example, if the packets used for cluster propagation
were dropped as a consequence of the increased con-
tention, more frequent tracking failures would take place.
When the resource-aware method is applied, however,
the packet loss rate is reduced by controlling the packet
generation rate at the cluster members, preventing the
medium from being saturated and thus leaving enough
bandwidth available for the other protocols such as the
clustering protocol. Such performance gain of the pro-
posed resource-aware approach is well-captured by the
improved DEE as shown in Fig. 25 (c). Fig. 26 shows the
estimated target trajectories of the non resource-aware
particle filter with 6 packet load and the resource-aware
particle filter. Note that the tracking errors are caused
by both communication failures and calibration inaccu-
racies.

6 Conclusions

In this paper, we proposed a resource-aware particle fil-
tering scheme for WCNs. The resource-aware method
utilizes an optimization process to achieve a certain level
of packet loss rate for the communication of tracking
information and to preserve packet delivery energy ef-
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Figure 21: Average tracking scores (ATSs) of 3 - 8 Lab
sequences. From top to bottom, each row shows ATSs for
the synchronized, GMM, and Parzen particle filters, re-
spectively. From left to right, each column depicts ATSs
under loss model 1 and 2, respectively.

ficiency. This packet allocation procedure alleviates the
data loss effects in particle filtering by adjusting the
amount of packets generated and transmitted by each
camera, thereby reducing the amount of collisions due
to a saturated communication medium. This procedure
allows collaborative tracking to be carried out using as
much data as possible and ultimately leads to more ac-
curate tracking. In addition, we presented three differ-
ent mechanisms for the exchange of particle information:
the synchronized, the GMM, and the Parzen particle fil-
ters. We extensively evaluated the performance of these
particle filters and analyzed their behaviors under differ-
ent network traffic conditions. Our experimental results
showed that whereas the synchronized particle filter can-
not tolerate even small amounts of communication fail-
ures, both the GMM and the Parzen particle filters can
be employed in lossy environments. The Parzen particle
filter is especially robust to communication failures and
performs relatively well even when communication qual-
ity is extremely low. Our proposed resource-aware packet
allocation mechanism improved both the tracking per-
formance and the energy efficiency of the GMM particle
filter. As for the Parzen particle filter, because track-
ing performance is generally robust even in the presence
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Figure 22: Average tracking errors (ATEs) of 3 - 8 Lab
sequences. From top to bottom, each row shows ATEs for
the synchronized, GMM, and Parzen particle filters, re-
spectively. From left to right, each column depicts ATEs
under loss model 1 and 2, respectively.

of severe communication problems, the main benefit of
the resource-aware approach is to significantly increase
its energy efficiency. The resource-aware distributed par-
ticle filters are an important tool for the development
of effective WCNs that can be employed in real-world
surveillance applications.

As for future work, we will consider (1) a resource-
aware approach to compute the optimal number of cam-
eras that should join a cluster in the form of cluster mem-
bers according to the current network conditions and
(2) a resource-allocation methodology to allow weighted
packet allocation to individual cluster members given the
available resources.
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