
Convolutional Adaptive Particle Filter with Multiple
Models for Visual Tracking

Reza Jalil Mozhdehi, Yevgeniy Reznichenko, Abubakar Siddique, and Henry Medeiros

Electrical and Computer Engineering Department, Marquette University, Milwaukee, WI, USA
{reza.jalilmozhdehi, yevgeniy.reznichenko, abubakar.siddique and

henry.medeiros}@marquette.edu

Abstract. Although particle filters improve the performance of convolutional-
correlation trackers, especially in challenging scenarios such as occlusion and
deformation, they considerably increase the computational cost. We present an
adaptive particle filter to decrease the number of particles in simple frames in
which there is no challenging scenario and the target model closely reflects the
current appearance of the target. In this method, we consider the estimated po-
sition of each particle in the current frame as a particle in the next frame. These
refined particles are more reliable than sampling new particles in every frame. In
simple frames, target estimation is easier, therefore many particles may converge
together. Consequently, the number of particles decreases in these frames. We
implement resampling when the number of particles or the weight of the selected
particle is too small. We use the weight computed in the first frame as a thresh-
old for resampling because that weight is calculated by the ground truth model.
Another contribution of this article is the generation of several target models by
applying different adjusting rates to each of the high-likelihood particles. Thus,
we create multiple models; some are useful in challenging frames because they
are more influenced by the previous model, while other models are suitable for
simple frames because they are less affected by the previous model. Experimen-
tal results on the Visual Tracker Benchmark v1.1 beta (OTB100) demonstrate that
our proposed framework significantly outperforms state-of-the-art methods.

Keywords: Adaptive Particle Filter ·Deep Convolutional Neural Network · Cor-
relation Models · Adjusting Rate · Visual Tracking.

1 Introduction

Tracking a specific target in challenging scenarios such as occlusion and deformation
has attracted the attention of computer vision researchers for decades. Recently, deep
convolutional neural networks (CNN) have been used to extract the target’s features.
One particularly effective mechanism to determine the similarity between an image
patch and the target is the correlation filter tracking framework [1,2,3]. Trackers based
on correlation filters measure the correlation between the target model and an image
patch in the frequency domain and are agnostic to the features used to represent the
targets. As a consequence, most state-of-the art CNN-based trackers integrate con-
volutional features and correlation filters [4]. The Hierarchical Convolutional Feature
Tracker (HCFT) proposed by Ma et al. [5] uses the hierarchical convolutional features
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generated by multiple layers of a deep CNN in a coarse-to-fine manner in conjunc-
tion with the correlation filter proposed in [6]. HCFT shows substantial performance
improvement in comparison with other visual trackers such as MEEM [7], Struck [8],
SCM [9] and TLD [10]. Thus, the idea of employing features generated using CNNs
with different filtering mechanisms is becoming increasingly more popular. However,
the main limitation of these correlation filters is to generate only one model in each
frame, which leads to high dependency on the estimated target size and position. In-
correctly updating the model causes inaccuracies in the determination of the target size
and position in subsequent frames.

In this article, we extend our previous visual tracker named Deep Convolutional
Particle Filter with Adaptive Correlation Maps (DCPF2) [11]. Similar to DCPF [12],
DCPF2 employs a particle filter in conjunction with a CNN and an adaptive correlation
filter. However, DCPF considers the target size to be fixed while DCFP2 also estimates
the target size in each frame. In our new tracker named Deep Convolutional Adap-
tive Particle Filter with Multiple Correlation Models (CAP-mc), we replace the particle
filter proposed in DCPF2 with an adaptive particle filter. Adaptive particle filters can
improve the results of object tracking [13]. However, they have not been used in con-
junction with CNNs and correlation filters yet. Our adaptive particle filter decreases
the number of particles and the computation cost in simple frames in which there is
no challenging scenario and the target model closely reflects the current appearance of
the target. Additionally, our adaptive particle filter can refine the particles’ locations to
be used in the next frame. This method is more reliable than sampling new particles in
every frame which was employed in DCPF2. We use the weight calculated in the first
frame as one of the resampling thresholds because it is based on the ground truth target
model, and hence serve as a reference for the quality of subsequent models. Another
threshold for resampling is the number of particles.

Additionally, we determined that the adjusting rate is a critical parameter in correlation-
based trackers. The adaptive correlation filter proposed in DCPF2 generates several tar-
get models based on all the high-likelihood particles to cover probable errors instead of
generating one model based on the selected particle. In our new tracker, we apply dif-
ferent adjusting rates to generate several target models for each high-likelihood particle.
Thus, we create multiple models; some are less affected by the previous model, such
models are useful in simple frames, while other models, more affected by the previous
model, are suitable for challenging frames. We tested our tracker on The Visual Tracker
Benchmark v1.1 beta (OTB100) [14], and the results show outstanding performance of
our tracker against state-of-the-art methods.

2 Deep Convolutional Adaptive Particle Filter with Multiple
Correlation Models

In this section, we present our adaptive particle filter illustrated in Fig. 1. We then
discuss our new adaptive correlation filter based on employing different adjusting rates.
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Fig. 1. Our proposed adaptive particle filter (when resampling is not needed).

2.1 Adaptive Particle Filter

Algorithm 1 explains our adaptive particle filter. In visual tracking, the ground truth
target position and size are used for initialization. Let z1 be the ground truth target
position and size in the first frame

z1 =
[
u1, v1, h1, w1

]T
, (1)

where u1 and v1 are the ground truth locations of the target and h1 andw1 are its ground
truth width and height. The target state is defined by

x1 =
[
z1, ż1

]T
, (2)

where ż1 is the velocity of z1 and is assumed to be zero in the first frame. After extract-
ing a patch from the first frame based on based on z1, we feed this patch to a CNN [15]
to calculate its convolutional features. the ground truth target model is then generated
by applying the Fourier transform to the convolutional features as explained in [5]. The
ground truth target model is used in calculating a threshold for the resampling process
as explained later in this section. Additionally, this model is updated during the next
frames as discussed in the next section.

In the next step, we generate and evaluate the initial particles as explained in Al-
gorithm 2. Considering xt−1 as the previous target state, the predicted target state is
calculated by [11]

x̂t = Axt−1, (3)
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where t is the frame number and A is a standard constant velocity process matrix de-
fined by

A =

[
I4 | I4

0(4,4) | I4

]
, (4)

where Iy is an y × y identity matrix and 0(u,z) is a u × v zero matrix. It is clear that
x̂2 = x1 because of ż1 = 0. As discussed in [11], by sampling from a zero-mean
normal distribution and adding those samples ζt ∈ R8 to x̂t, the particles are generated
according to

x
(i)
t = x̂t + ζ

(i)
t , (5)

where
x
(i)
t =

[
z
(i)
t , ż

(i)
t

]T
, (6)

where i = 1, ..., Nt and Nt is the number of initial particles.

Algorithm 1 Adaptive particle filter

Input: Current frame, previous target state xt−1 and Ct−1 target models f(j)
t−1

Output: Current target state xt, particles x(i)t+1 for the next frame
1: Generate initial particles to determine the target state xt according to Algorithm 2
2: if t = 1 then
3: Calculate Tw

4: end if
5: Update particles and remove redundant ones using Algorithm 3
6: Examine the resampling conditions according to Eq. 15 and Eq. 16
7: if resampling is needed then
8: Generate particles x(i)t+1 for the next frame based on Algorithm 2
9: else

10: Calculate the predicted particles x̂(p)(t+1) for frame t+ 1 using Eq. 17

11: for each x̂(p)(t+1) do
12: Generate β samples of the target size
13: Calculate the particles for the next frame t+ 1 according to Eq. 18
14: end for
15: end if

In the next step, different patches from frame t are generated based on z(i)t . For each
patch, a convolutional feature map is calculated using the CNN. Let R(i)(j) ∈ RM×Q

be the final correlation response map for particle i and target model j, j = 1, ..., Ct−1

(the generation of different target models in the previous frame is explained in the next
section).M andQ are the length and width of the final correlation response map. These
correlation response maps are computed by comparing the target models and the convo-
lutional feature maps [5]. For each correlation response map, the likelihood or weight
is calculated by [11]

ω(i)(j) =

M∑
m=1

Q∑
q=1

R
(i)(j)
(m,q), (7)
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Algorithm 2 Generate and evaluate initial particles

Input: Current frame, previous target state xt−1 and Ct−1 target models f(j)
t−1

Output: Current target state xt, Nt particles x(i)t , their correlation
response maps R(i)(j), their weights ω(i)(j), maximum weight ω(i∗)(j∗) and the
best target model f∗

t−1

1: Calculate the predicted target state x̂t according to Eq. 3 and Eq. 4
2: Generate Nt particles x(i)t around the predicted target state according to Eq. 5 and Eq. 6
3: for each particle x(i)t do
4: for each of the Ct−1 target models f(j)

t−1 do
5: Generate the correlation response map R(i)(j)

6: Calculate its weight ω(i)(j) according to Eq. 7
7: end for
8: end for
9: Find the maximum weight ω(i∗)(j∗) based on Eq. 8

10: Consider the particle corresponding to ω(i∗)(j∗) as the final target state xt
11: Consider the target model corresponding to ω(i∗)(j∗) as the best model f∗

t−1

In the first frame, after comparing the convolutional features with the ground truth

Algorithm 3 Update particles and remove redundant ones

Input: Nt particles x(i)t , their correlation response maps R(i)(j), their weights ω(i)(j)

Output: Remaining updated particles x̄(i)(j)t

1: for each R(i)(j) do
2: Calculate its peak according to Eq. 9
3: Update its state x(i)t to find x̄(i)(j)t using Eq. 10 to Eq. 12
4: end for
5: for every pair of particles do
6: if Eq. 13 is satisfied then
7: Remove the particle with lower weight
8: end if
9: end for

model , we save the weight calculated from the correlation response map as a threshold
Tw which is a reliable representative of the target because it is calculated based on the
ground truth model. The location of the particle with the maximum weight is [11]

[i∗, j∗] = arg max
i,j

ω(i)(j). (8)

The maximum weight is therfore ω(i∗)(j∗), i.e., the weight corresponding to [i∗, j∗].
The target size corresponding to the maximum weight is then selected as the size of
the bounding box for the current frame [11]. For the target position, the peak of the
correlation response map with maximum weight is added to the corresponding particle
location as discussed in [11]. Thus, the final target state xt is calculated by comparing
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Algorithm 4 Generate multiple target models

Input: Current frame, maximum weight ω(i∗)(j∗), updated states x̄(i)(j)t , their weights ω(i)(j)

and the best target model f∗
t−1

Output: Ct target models f(j)
t for the next frame t+ 1

1: Examine Eq. 20 to determine the high-likelihood states
2: Generate Kt current target models f̆(j)

t based on the high-likelihood states
3: for Each f̆(j)

t do
4: if Eq. 15 is correct then
5: Select the set with higher adjusting rates S1

6: else
7: Select the set with lower adjusting rates S2

8: end if
9: Generate Γ final target models f(j)

t for the next frame based on Eq. 21
10: end for

the convolutional features of particle i∗ (the best particle) and the j∗th target model (the
best target model). We define the best model as f∗

t−1, which is one of the Ct−1 target
models generated in frame t− 1.

We then use the positions estimated in frame t as the locations of the new particles
for frame t+ 1 as explained in Algorithm 3. The peak of the correlation response map
of particle i compared with target model j is given by [11]

[δ(i)(j)u , δ(i)(j)v ] = argmax
m,q

R
(i)(j)
(m,q). (9)

The target position corresponding to that particle and target model is then given by [11]

[ũ
(i)(j)
t , ṽ

(i)(j)
t ] = [u

(i)
t + δ(i)(j)u , v

(i)
t + δ(i)(j)v ], (10)

where [u
(i)
t , v

(i)
t ] corresponds to the location of particle i according to Eq. 5. As seen

in Eq. 9, for the location of each particle x(i)t , we estimate Ct−1 target positions. The
updated particle i compared with target model j in frame t is

x̄
(i)(j)
t =

[
z̄
(i)(j)
t , ˙̄z

(i)(j)
t

]T
, (11)

where ˙̄z
(i)(j)
t is the updated version of ż(i)t based on [ũ

(i)(j)
t , ṽ

(i)(j)
t ] and

z̄
(i)(j)
t =

[
ũ
(i)(j)
t , ṽ

(i)(j)
t , h

(i)
t , w

(i)
t

]T
. (12)

z̄
(i)(j)
t is rounded because target positions and sizes are discrete quantities measured in

pixels. After rounding, several z̄(i)(j)t may map to the same location. Since the initial
particles can refine their locations for subsequent frames, these refined particles perform
better than newly sampled particles in every frame. Their locations can also merge
especially in simple frames to decrease the number of particles. Thus, the number of
particles in simple frames is lower. For the target size, our tracker samples around each
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Fig. 2. Decreasing the number of the particles in simple frames and implementing resampling in
difficult frames.

remaining particle based on its velocity. Consider two particles x̄(i
′
)(j
′
)

t and x̄(i
′′
)(j
′′
)

t ,
if

[ũ
(i
′
)(j
′
)

t , ṽ
(i
′
)(j
′
)

t ] = [ũ
(i
′′
)(j
′′
)

t , ṽ
(i
′′
)(j
′′
)

t ], (13)

and
ω(i
′
)(j
′
) > ω(i

′′
)(j
′′
), (14)

x̄
(i
′
)(j
′
)

t is selected and x̄(i
′′
)(j
′′
)

t is removed, that is, if two particles converge to the
same target position, the one with highest weight is selected and the other is removed.
In the next step, theCt target models are generated as discussed in the following section.

Two resampling conditions are then examined for frame t+ 1. The first condition is

ω(i∗)(j∗) > ϕ× Tw. (15)

As explained earlier, Tw is the maximum particle weight in the first frame. This
maximum weight is calculated based on the comparison with the model generated by
the ground truth in the same frame. When the maximum weight in frame t is less than
Tw, it means our tracker could not produce a reliable correlation response map because
of challenging scenarios such as occlusion. Therefore, the particles cannot properly
refine their locations based on these weak correlation response maps. In these scenarios,
we resample new particles. The second resampling condition is

Nt · Ct−1 − Z > Tt, (16)

where Tt is the minimum number of particles to transfer to the next frame, and Z is
the number of x̄t which are removed. When too many particles converge to the same
location and Z is too high, we increase the number of particles by resampling.

If resampling is not needed, we should predict new particles for the next frame based
on the remaining particles in the current frame. Let P = Nt · Ct−1 − Z be the number
of remaining particles. We then predict the new particles for frame t+ 1 according to

x̂
(p)
t+1 = Ax̄

(p)
t , (17)

where p = 1, ..., (Nt · Ct−1 − Z) is the index of the remaining particles. We generate
β samples to be added to the target size of each x̂(p)(t+1) according to

x
(f)
t+1 = x̂

(p)
t+1 + [0(1,4), ζ

(f)
t+1], (18)
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where ζ(f)t+1 ∈ R4 is drawn from a zero-mean normal distribution and f = 1, ..., β.
Thus, the number of particles for frame t+ 1 is

Nt+1 = β · (Nt · Ct−1 − Z). (19)

If the resampling conditions are not met, the selected target state xt for frame t is
applied in Eq. 3 to Eq. 6 to generate the new particles. Fig. 2 illustrates how the number
of the particles decrease in simple frames. Additionally, the figure shows when the max-
imum weight significantly decreases comparing with Tw, resampling is implemented.

2.2 Multiple Correlation Models

In this section, we describe the process to generate Ct target models for frame t to be
employed in frame t + 1. A target model is generated by computing the Fourier trans-
form of the convolutional features corresponding to an image patch. Fig. 3 illustrates
our method for generating several target models. As discussed in [11], a comparison
between the best model and the most accurate target size and position results in higher
weights. Similar to [11], we select all high-likelihood target states by examining the
following relation over all Nt × Ct−1 weights

ω(i)(j) > αω∗, (20)
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where we set α to 0.8. The particles that satisfy Eq. 20 are considered high-likelihood
candidates [11]. A target model is generated based on each of the Kt selected high-
likelihood particles in frame t, as discussed in [11]. Let f̆(j)

t represent one of the Kt

target models generated from the current frame. The final target models to be used in
frame t + 1 are a combination of the current target models and the previous selected
target model according to [5]

f(j)
t = (1− Υ )f∗

t−1 + Υ f̆(j)
t , (21)

where Υ is the adjusting rate. As seen in Fig. 4, the adjusting rate has a significant
influence on the performance of correlation trackers. In our tracker, we consider differ-
ent adjusting rates and then apply them to Eq. 21. Thus, the number of target models
becomes

Ct = ΓKt, (22)

where Γ is the number of adjusting rates. We define two sets of adjusting rates S1 and
S2. Eq. 15, determines which set should be used at each frame. When the tracker does
not satisfy Eq. 15, the correlation response maps are not reliable because of challenging
scenarios, and we should use lower adjusting rates to increase the effect of the previous
target model and decrease the current one. When Eq. 15 is satisfied, we can use higher
adjusting rates. Algorithm 4 explains the method of generating multiple target models.

3 Results and Discussion

We used the Visual Tracker Benchmark v1.1 beta (OTB100) to test our tracker per-
formance. This benchmark contains 100 data sequences and considers 11 challenging
scenarios. Results are based on a one-pass evaluation, which means the ground truth
target size and position are used in the first frame to initialize the tracker. We select
Nt = 300, ϕ = 0.7, Tr2 = 4, β = 5, Γ = 3, S1 = [0.0075, 0.01, 0.015] and
S2 = [0.0075, 0.005, 0.001]. The number of adjusting rates in each set is limited to
three because of the computation costs. However, these sets are defined based on exper-
iments. The precision and success criteria are explained in [14].
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Fig. 5. Qualitative evaluation of our tracker, DCPF2, SINT and HCFT on three challenging se-
quences (from top to bottom Human3, Car1 and Freeman4, respectively).

Fig. 5 illustrates the qualitative evaluation of our tracker compared to DCPF2, SINT
[16] and HCFT. In the first data sequence Human3, the lower adjusting rate helps our
tracker to rely more on the previous target model. In the second data sequence Car1, Our
tracker improves the estimated target position. Additionally, it is able to better handle
the occlusion in the third data sequence Freeman4.

We compared our tracker with eight state of the art trackers including: CFNet-conv3
[17], SiameseFC [18], SINT, LCT [19] and CNN-SVM [20], HDT, HCFT and DCPF2.
As illustrated in Fig. 6, our overall performance in terms of precision and success are
improved by 3.5% and 5.5% in comparison with DCPF2, which is the second and
fourth-best tracker in the precision and success plots, respectively. Our tracker out-
performs SINT, the second-best tracker in the success plot, by around 4.5%. On defor-
mation and occlusion, our performance is better because we employ different adjusting
rates and decrease the updating rate of the model in challenging frames. As seen in
Fig. 6, for deformation and occlusion, our performance is improved around 4.5% in
precision and 6% in success in comparison with the second-best tracker. For other chal-
lenging scenarios such as motion blur, background clutter and out of plane rotation,
our tracker shows improvements of approximately 5%, 3.5% and 3%, respectively, in
comparison to the second-best tracker.
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Fig. 6. Quantitative evaluation of our tracker in comparison with state-of-the-art trackers on OPE.

4 Conclusion

This article proposes a novel framework for visual tracking based on the integration of
an adaptive particle filter, a deep CNN, and a correlation filter. In our adaptive particle
filter, the locations of the updated particle in the current frame are used as particles
for the next frame, which provides more reliable particles than sampling around the
final estimated target state in every frame. Our adaptive particle filter can decrease the
number of particles especially in simple frames because the particles can converge to-
gether. If the number of particles is too small or the maximum weight in the current
frame is significantly lower than the weight in the first frame, resampling is performed.
The reason for using the weight in the first frame as a threshold for resampling is that
it is computed based on the ground truth target model, and hence serves as an upper
bound on the weight of subsequent particles. Additionally, we generate multiple target
models in each frame by applying different adjusting rates to the models created by the
high-likelihood particles. For challenging frames, we use lower adjusting rates, which
means we rely more on previous target models. The Visual Tracker Benchmark v1.1
beta (OTB100) is used for evaluating the proposed tracker’s performance. The results
show that our tracker outperforms several state-of-the-art methods.
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