
Fast and robust curve skeletonization for real-world elongated objects

Amy Tabb
USDA-ARS-AFRS

Kearneysville, West Virginia, USA
amy.tabb@ars.usda.gov

Henry Medeiros
Marquette University, Electrical and Computer Engineering

Milwaukee, Wisconsin, USA
henry.medeiros@marquette.edu

Abstract

We consider the problem of extracting curve skeletons
of three-dimensional, elongated objects given a noisy sur-
face, which has applications in agricultural contexts such
as extracting the branching structure of plants. We de-
scribe an efficient and robust method based on breadth-first
search that can determine curve skeletons in these contexts.
Our approach is capable of automatically detecting junc-
tion points as well as spurious segments and loops. All of
that is accomplished with only one user-adjustable param-
eter. The run time of our method ranges from hundreds of
milliseconds to less than four seconds on large, challenging
datasets, which makes it appropriate for situations where
real-time decision making is needed. Experiments on syn-
thetic models as well as on data from real world objects,
some of which were collected in challenging field condi-
tions, show that our approach compares favorably to clas-
sical thinning algorithms as well as to recent contributions
to the field.12

1. Introduction
The three-dimensional reconstruction of complex ob-

jects under realistic data acquisition conditions results in
noisy surfaces. We describe a method to extract the curve
skeleton of such noisy, discrete surfaces for the eventual
purpose of making decisions based on the curve skeleton.
Much work has been done in the computer graphics com-
munity on the problem of skeletonization. In general, curve
skeletonization converts a 3D model to a simpler represen-

1The citation information for this paper is: A. Tabb and H. Medeiros,
“Fast and robust curve skeletonization for real-world elongated objects”,
2018 IEEE Winter Conference on Applications of Computer Vision
(WACV), Lake Tahoe, NV/CA. DOI 10.1109/WACV.2018.00214

2Mention of trade names or commercial products in this publication
is solely for the purpose of providing specific information and does not
imply recommendation or endorsement by the U.S. Department of Agri-
culture. USDA is an equal opportunity provider and employer. A. Tabb
acknowledges the support of US National Science Foundation grant num-
ber IOS-1339211.

tation, which facilitates editing or visualization [7] as well
as shape searching and structure understanding [3, 11, 16].
However, the work in the computer graphics community
usually assumes noise-less surfaces or surfaces with neg-
ligible noise levels. In this work, we intend to use curve
skeletons as an intermediate step between surface recon-
struction and computing measurements of branches for au-
tomation applications in which robustness to noise and fast
execution are important, such as in the automatic modeling
of fruit trees in an orchard [28].

There are two commonly-used types of skeletons, the
medial axis transform (MAT) skeleton, and the curve skele-
ton. Skeletons using MAT are curves in 2D while in 3D they
are locally planar. They allow for the original model to be
reconstructed but are very sensitive to local perturbations
[19]. Curve skeletons consist of one-dimensional curves
for surfaces in 3D, which provides a simpler representation
than MAT-type skeletons (see [7] for a comprehensive re-
view). However, because there are different definitions of
curve skeletons, there is an abundance of methods, with dif-
ferent advantages and disadvantages.

The problem we explore in this paper is to compute
curve skeletons of discrete 3D models represented by vox-
els, which may be sparse, noisy, and are characterized by
elongated shapes. The curve skeleton must be thin and one-
dimensional except in the case of junction points, which
should be detected during the computation of the curve
skeleton. The skeleton must also be centered, but because
of noise and the use of voxels we use the relaxed centered-
ness assumption (see [7] for more details). To make our ap-
proach robust to noise, we identify spurious curve skeleton
segments in the course of the algorithm, which removes the
need for a separate pruning step [4, 21, 31]. Finally, since
our work is mainly concerned with real trees, branch cross-
ings occur and support poles may be attached to the trees
via ties. As a result, our datasets include loops and cycles
and breaking a loop is not desirable. Hence, our method
is able to determine that curve skeleton segments which do
not terminate at a surface voxel are part of a loop.

We propose a path-based algorithm for the real-time

computation of curve skeletons of elongated objects with
noisy surfaces that takes into account all of the criteria
above. Specifically, our contributions are: 1) our method
is robust to noise and there is no requirement for additional
pruning, 2) it has time complexity O(n

7
3) – where n is the

number of occupied voxels in 3D space – and as a result is
suitable for automation contexts, 3) the method can handle
loops, 4) we provide an extensive evaluation on synthetic
models as well as on real-world objects, and 5) we provide
source code that is publicly available [27].

2. Related work

Using laser data, there has been some related work on
the problem of extracting cylinders from point cloud data
[6, 15, 17, 24, 29]. Such methods cannot be used for the
datasets we consider because these works assume that the
underlying shapes are cylinders. While elongated shapes
may be locally cylindrical, they may have many curves and
cylinder fitting may not be appropriate for these shapes.

In [2], the authors compute MAT-style skeletons and
combine those ideas with those of traditional thinning, for
the purposes of object recognition and classification with
an emphasis on reconstruction. Their algorithm is efficient,
but like many other algorithms it depends on a pruning step
which requires parameter setting. Other works which com-
bine the ideas of thinning with computing skeletons are
[10], where a bisector function is used to compute a surface
skeleton, and [5] where new kernels are used for thinning.

In [30], the authors provide an algorithm for computing
a curve skeleton from a discrete 3D model, assuming that
some noise is present. This is accomplished by a shrink-
ing step that preserves topology, as well as a thinning step
to create 1D structures, and finally a pruning step. While
that method is able to deal with some noise, the shrinking
step involved in the algorithm would result in missing some
branches with small scale.

A recent approach that is most similar to the method we
present was proposed by Jin et al. in [12, 13]. In these
works, curve skeletons are extracted from medical data that
contains noise, and once a seed voxel has been identified,
new curve skeleton segments are found via searches based
on the geodesic distance. While our method shares a simi-
lar overall structure in that paths are iteratively discovered,
we do not make assumptions concerning the thickness and
lengths of neighboring branches. In addition, that method
was not designed to handle loops. Finally, in that work, the
authors note the problems with computational speed in their
approach because of the use of geodesic path computations.
Our method was conceived to be executed in real-time and
is hence computationally inexpensive.

3. Method description
The proposed method to compute a curve skeleton is

composed of four main steps:
1. Determine the seed voxel for the search for curve skele-

ton segments (Section 3.2);
2. Determine potential endpoints for curve skeleton seg-

ments (Section 3.3);
3. Determine prospective curve segments (Section 3.4);
4. Identify and discard spurious segments and detect loops

(Section 3.5).
Step 1 is executed once at initialization, whereas the re-
maining steps are executed iteratively until all curve seg-
ments have been identified. These steps are described in de-
tail below and the entire process is illustrated in Figure 1. In
this description, we assume that there is only one connected
component, but if there are additional connected compo-
nents, all four steps are performed for each component.

3.1. Preliminaries

The set of occupied voxels in 3D space is V, and n = |V|
is the number of occupied voxels. We note here that vox-
els are defined with respect to a uniform three-dimensional
grid, and we let the number of voxels (occupied and empty)
in such a grid be N . However, in this work, we only oper-
ate on occupied voxels, and since the objects we treat are
elongated, n� N . In the remainder of the document, vox-
els will mean occupied voxels. We interpret the voxels as
nodes in a graph and assume that voxel labels are binary:
occupied or empty. The edges of the graph are defined by a
neighborhood relationship on the voxels. We represent the
set of occupied neighbors for a voxel vi asNi. In our imple-
mentation we use a 26-connected neighborhood. A surface
voxel has |Ni| < 26 and the set of surface voxels is S ⊆ V.

Each segment of the curve skeleton is represented by a
set of voxels. At each iteration m of the skeletonization al-
gorithm, a new curve skeleton segment C(m) is discovered.
Then, the overall skeleton is represented by the set C which
is the set of skeleton segment sets:

C =
⋃
m

{C(m)}. (1)

3.1.1 Modified breadth-first search algorithm

Our skeletonization method is heavily based on a proposed
modification of breadth-first search (BFS) which allows one
to alter the rate at which nodes are discovered according to a
weighting function. We now discuss this BFS modification
generally and then show its application to our approach to
curve skeletonization in future sections.

In classic BFS, there are three sets of nodes: non-
frontier, frontier, and undiscovered nodes and the result of
the BFS is a label for each node in the graph. The starting

Cross sections of di values

0

3.5

7

(a) Step 1.1: Compute di

v∗

(b) Step 1.2: Locate v∗
0

224

448

672

(c) Step 2.1: Compute BFS1 map from
C = {v∗}

vt

(d) Step 2.2: Locate poten-
tial endpoint vt from BFS1
labels

vt

C = {v∗}

unexplored
region 0

226

452

678

(e) Step 3.1: Compute BFS2 from vt; black re-
gions are currently unexplored.

vt

(f) Step 3.2: Compute path
from BFS2 labels

C(1)

(g) Step 4.1: Accept path if
not spurious

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV
#257

ECCV
#257

C(1)

vt

C(3)

C(2)

(h) Step 4.2: Loop processing

Figure 1. Best viewed in color. Illustration of the computation of curve skeletons with our proposed method on an artificially created
three-dimensional object consisting of three intersecting segments of varying diameters. Legends for colormaps are indicated to the right
of the figures. In step 1.1 shown in 1a, the distance labels di are computed; the cross sections in 1a show the pattern of labels in the object’s
interior. Then 1b shows step 1.2, where v∗ is selected from the local maxima of di; any voxel in the local maxima may be selected. In Step
2.1, the BFS1 map (Section 3.3.1) from v∗ given di is computed (Figure 1c). In 1d, step 2.2, the maximal label from step 2.1 is selected
as a proposed endpoint vt. Figure 1e shows step 3.1 in which we compute the BFS2 labels (Section 3.4.1) from vt to the current curve
skeleton, which is C = {v∗}. Step 3.2 in Figure 1f consists of tracing the path through the BFS2 labels from v∗ to vt. In step 4.1, we
accept the path as part of the curve skeleton if it passes the spurious path test (Figure 1g). Finally, in Figure 1h we show the loop handling
procedure; vt is found on the right-hand side, and the loop is incorporated into the curve skeleton. This completes the steps for iteratively
adding a curve segment. Steps 2.1 through 4.2 are then repeated until there are no more proposed endpoints that pass the spurious path test.

node has a label of 0 and the labels of other nodes are the
number of edges that need to be traversed on a shortest path
from any node to the starting node. In our modified BFS al-
gorithm, the labels represent the sum of pairwise distances
along the shortest path to a given node.

Each voxel vi also has a weight assigned to it, wi. Voxels
with smaller values of wi are incorporated into the frontier
before neighboring voxels with higher weight values. The
speed of discovery of nodes can thereby be altered to fa-
vor paths that go through voxels with characteristics which
are desirable for a specific purpose as explained in detail in
Section 3.3.

Our modified BFS is shown in Algorithm 5. The frontier
for a particular iteration k is F(k), which is composed of two
subsets, F(k)

A and F(k)
B . The initialization of F(0)

A depends
on the intended use of the algorithm (details are given in
Sections 3.3.1 and 3.4.1), and F(0)

B is always initially empty.
The label of voxels is given by:

li =

{
∞ if vi /∈ F(0)

A

0 if vi ∈ F(0)
A

(2)

The algorithm progresses as follows. A voxel vi ∈ F(k)
A

has neighbors vj which had been discovered previously as
well as neighbors that were discovered later than itself as
determined by the labels of vi and its neighbors. In line 3,
only neighbors discovered later than the voxels in F(k)

A are
updated based on the label of vi, the weight wi, and the dis-
tance between the neighboring voxels. The set N(k) in line
6 is the set of frontier candidates beyond the current frontier
at iteration k. N(k) is used to select a label threshold, lmin.
If the voxels in F(k) have a label greater than this threshold,
they remain in the frontier (specifically F(k+1)

B) for the next
iteration. If a voxel vi in F(k) has a label smaller than this
threshold, then those neighbors of vi which were discovered
later than vi are placed in F(k+1)

A and vi is removed from the
frontier for the next iteration. The distinction between F(·)

A

and F(·)
B allows for a more efficient implementation because

only labels in F(·)
A must be updated in line 4.

3.2. Determination of the seed voxel v∗

As mentioned above, the first step of our skeletonization
algorithm is the determination of the seed voxel. This step

Algorithm 1 Modified BFS Algorithm
Input: Set of occupied voxels V, initial frontier voxels

F(0)
A , voxel weights wi, initial voxel labels li

Output: Updated voxel labels li
1: k = 0, F(0)

B = ∅
2: while |F(k)

A | > 0 do
3: for each voxel vi ∈ F(k)

A do
4: for each voxel vj ∈ Ni such that (lj > li) do
5: lj = min(lj , li + wj + ||vj − vi||)
6: F(k) = F(k)

A ∪ F(k)
B

7: N(k) = {vj |lj > li,∀vj ∈ Ni,∀vj /∈ F(k),∀vi ∈
F(k)}

8: lmin = minvj∈N(k) lj

9: F(k+1)
A = {vj |li < lmin,∀vi ∈ F(k),∀vj ∈ N(k)}

10: F(k+1)
B = {vi|li ≥ lmin,∀vi ∈ F(k), |Ni ∩ N(k)| >

0}
11: k = k + 1

consists of two sub-steps: computation of distance labels,
and localization of an extreme point as explained below.

3.2.1 Distance label computation

To compute the distance labels di, i = 0, ..., n− 1, we com-
pute the distance transform using Euclidean distances so
that di represents the distance from vi to the closest voxel
in S, i.e., a surface voxel. To compute the distance labels
efficiently, we use the linear-time algorithm of [18] on the
occupied voxels in our graph representation (note that the
pseudo-code in [18] considers regular grids instead). In ad-
dition, in our implementation, the three scans of the algo-
rithm are executed in parallel.

3.2.2 Finding the seed voxel v∗

Once the distances di are computed, we find the voxels
with maximum distance label, dmax, which ensures that the
curve skeleton goes through the thickest part of the object.
There may be several voxels with di = dmax, and we arbi-
trarily select one of them to be v∗. If a point of the curve
skeleton is known to be a desirable seed point for a specific
application, that point may be selected to serve as v∗ with-
out affecting the subsequent steps we describe in this paper.

3.3. Determination of endpoint candidates

This section describes the first step to determine the
curve skeleton segments C(m): the identification of the end-
points of prospective segments that are connected to exist-
ing segments in the skeleton. This is done in two sub-steps.
First, we compute the breadth-first search distances from

the existing curve segments to potential endpoints. We call
this step BFS1. Then, a candidate endpoint is identified
from the extreme points in this set. These sub-steps are de-
scribed in detail below.

3.3.1 BFS1 Step

At the first iteration of our algorithm, the curve skeleton
consists of a single voxel, v∗. We initialize F(0)

A = {v∗} in
Algorithm 5, and initialize the labels as in Equation 2. We
then perform Algorithm 5 using weights wi = dmax − di,
where di and dmax are the distance labels and the max-
imum distance label, respectively (shown in Figure 1a).
These weights increase linearly according to a voxel’s Eu-
clidean distance to a surface voxel, i.e., surface voxels have
wi = dmax. The overall effect of weighting the search in
such a way is that paths which pass through the center of
the object are explored first. This procedure finds the dis-
tances from each voxel to the existing curve skeleton along
a centered path. As explained in detail below, points with
maximal distance are endpoint candidates.

At each subsequent iteration of the algorithm, new curve
skeleton segments (which are identified as described in Sec-
tions 3.4 and 3.5 below) are added to F(0)

A and the BFS1
labels are updated accordingly. For improved efficiency,
on subsequent iterations, BFS1 labels are simply updated
instead of computed from scratch. Suppose that on itera-
tion m the set of approved curve skeleton segment voxels
is C(m−1), so that F(0)

A = C(m−1). We leave the existing
BFS1 labels from iteration m − 1 unchanged, except for
those in F(0)

A :

l
(m)
i =

{
l
(m−1)
i if vi /∈ F(0)

A

0 if vi ∈ F(0)
A

(3)

Then Algorithm 5 progresses as usual given these labels.

3.3.2 Identification of an endpoint candidate vt from
BFS1

We next identify candidate endpoint voxels of the curve
skeleton. A candidate endpoint voxel is a surface voxel
which is not yet connected to the curve skeleton. An end-
point candidate is given by the voxel vt ∈ S such that the
label of vt is greater than or equal to any other BFS1 label
for any other surface voxels, i.e.,

vt = arg max
vi∈S

(li) , (4)

where li is the BFS1 label of vi. There may be multiple
voxels with the same maximum label value. As in the seed
voxel selection step in Section 3.2.2, vt may be chosen arbi-
trarily from the set of voxels with the maximum label value.

3.4. Determination of prospective curve segments

The existing curve skeleton might be reachable from a
proposed endpoint vt via more than one path (see Figure
1h, for example). We use the breadth-first search distance
from the prospective endpoint to the existing curve skeleton
to identify those branches and junction points. This is also
done in two sub-steps. First, we compute the BFS distances
from vt, which we call the BFS2 step. Then we determine
the curve skeleton segments by analyzing connected com-
ponents. These sub-steps are explained in detail below.

3.4.1 BFS2 Step

In order to determine where a proposed curve skeleton seg-
ment intersects with the existing curve skeleton, we use Al-
gorithm 5 with weights wi = dmax − di, as in the BFS1
step. Unlike the BFS1 step, however, for each iteration of
the algorithm, the labels are now initialized using Equation
2 with F(0)

A = {vt}. When an existing curve skeleton sec-
tion is encountered, the search is stopped for that region.
The output of this step are the BFS2 labels.

Once the BFS2 labels are computed, the frontier arcs are
then analyzed and grouped by connected components. The
number of connected components in the frontier voxel set is
the number of curve skeleton paths from vt to the existing
curve skeleton.

3.4.2 Identification of curve skeleton segments from
BFS2

Let a frontier connected component (FCC) from BFS2 be
the set of voxels FCC . We determine the voxels in FCC that
are neighbors of the existing curve skeleton C and denote
these voxels as FCSN :

FCSN = {vi|(vi ∈ FCC) ∧ (∃vj ∈ Ni) ∧ (vj ∈ C)}. (5)

From FCSN we determine the voxel with the smallest BFS2
label in the set and denote this voxel as vs,1, i.e.,

vs,1 = arg min
vi∈FCSN

(li) , (6)

where li is the BFS2 label. As before, there may be many
voxels with the same smallest label, and one may be chosen
arbitrarily. The next step is to determine the path from vs,1
to vt such that the path is centered. We accomplish this with
the BFS2 labels as well as the distance transform labels di.
This combination improves centeredness on curved portions
as compared to only using BFS2 labels.

The process of determining a new curve skeleton seg-
ment is sketched in Algorithm 6. The sequence of current
voxels vc creates a new curve skeleton segment. We start
from the neighbor of the existing curve skeleton, vs,1, and
set vc equal to vs,1. We determine d∗ by examining vc’s

Algorithm 2 Determination of curve skeleton segment from
BFS2 and di
Input: Set of occupied voxels V, BFS2 voxel labels li,

voxel distance transforms di, proposed endpoint vt,
voxel in the existing curve skeleton vs,1

Output: Curve skeleton segment C(m)

1: vc = vs,1
2: C(m) = {vs,1}
3: while (vc 6= vt) ∧ (vc /∈ C) do
4: Determine d∗ = max

vi∈Nc∧lc>li
(di) where di is the

distance transform of vi
5: Compute vn = arg min

vj∈N∗
c

(lj) where lj is the BFS2

label of vj and N ∗c = {vj |vj ∈ Nc, dj = d∗}
6: C(m) = C(m) ∪ {vn}
7: vc = vn

neighbors and the BFS2 labels. Let the BFS2 label of vc
be lc. d∗ is the maximum distance label of vc’s neighbors
whose distance labels li are less than lc. Then vn is deter-
mined as the voxel, out of vc’s neighbors, with the smallest
BFS2 label among those voxels with distance transform la-
bel equal to d∗. The practical ramifications for these choices
are as follows. By choosing the next voxel vn as a voxel
with a smaller BFS2 label value than vc, we are guaranteed
to be moving towards vt within the voxels that are occupied.
Secondly, by requiring that the next distance dn = d∗, we
are choosing the voxel most in the center of all of the neigh-
boring voxels that are on a path towards vt in the occupied
voxels. Algorithm 6 is performed for all FCCs.

3.5. Identification of spurious segments and loops

Due to the noisy nature of our surfaces, it is necessary
to reject some of the curve skeleton segments identified in
the previous step. In the next section, we describe our ap-
proach to classify curve skeleton segments as spurious or
non-spurious using the frontier voxels from the BFS2 step.
When the number of FCCs is one, the proposed curve seg-
ment C(m) undergoes the spurious curve segment classifi-
cation described in the next section. When the number of
FCCs is greater than one, a loop is present, and this case is
handled using the approach described in Section 3.5.2.

3.5.1 Spurious curve segment classification

Our classification approach assumes that the surface voxels
are disturbed by additive three-dimensional Gaussian noise
η ∼ (µ,Σ) and checks whether the endpoint of the pro-
posed curve segment vt belongs to this distribution.3 If

3Although we used a Gaussian model for mathematical convenience,
our experiments showed that the real noise distribution has little impact on
the performance of our approach. That is the case for real-world data or

it does not, the segment is considered spurious. To com-
pute this distribution, note that FCC is composed of interior
and surface voxels. Let the set of surface voxels from FCC

be FS , and let vs,0 be the closest voxel from the existing
skeleton to the proposed segment. For each voxel vj ∈ FS ,
we determine the difference vector v′j = vj − vs,0. Then,
the sample mean and the sample covariance of η are given
by µ = 1

N

∑N
i=1 v

′
j and Σ = 1

N

∑N
i=1

(
v′j − µ

) (
v′j − µ

)T
where N = |FS |.

The squared difference vectors ||v′j ||2 are χ2-distributed
with three degrees of freedom. In order to classify a curve
segment C(m), we compute the probability that the shifted
segment endpoint v′t = vt − vs,0 belongs to this χ2-
distribution. Let x = (v′t−µ)T Σ−1(v′t−µ), its probability
density function is given by

f(x) =
x1/2e−x/2

23/2Γ(3/2)
. (7)

If f(x) > t, where t is a user-supplied acceptance probabil-
ity, then the curve segment’s tip vt is considered part of the
surface voxel’s distribution and consequently discarded as a
spurious segment. Otherwise, C(m) is incorporated into the
existing curve skeleton. This approach allows curve seg-
ments to be classified as spurious or not depending on local
conditions and not on absolute parameters.

3.5.2 Loop handling for multiple frontier connected
components

The presence of multiple FCCs indicates that one or more
tunnels are present in the surface, which corresponds to one
or more loops in the curve skeleton. In this case, we do
not pursue the spurious curve classification step and instead
handle the loop first (Algorithm 7); once the loop has been
located, the algorithm returns to spurious curve segment
classification (§3.5.1). Let the j-th FCC be represented by
the set of voxels FCC,j , where j = 0, 1, ..., a − 1 and a is
the number of FCCs. Then for each FCC,j , we compute a
proposed curve skeleton segment using Algorithm 6, and let
this proposed curve skeleton segment be denoted C′j . The
proposed curve skeleton segments C′js have some voxels in
common. In particular, all of the proposed segments travel
through the region near the tip vt, which is a surface voxel.
We remove this common region near the tip from all of the
C′js (lines 1, 3). Then, the C′js are processed such that there
are no redundancies between C′js (line 5) and added to the
set of curve skeleton segments C (line 6). A figure illustrat-
ing this process is in the supplemental materials.

Algorithm 8 summarizes the complete proposed ap-
proach. Line 1 corresponds to the seed localization step per-
formed at initialization as described in Section 3.2. Lines 3-

even when a substantial amount of shot-like noise is introduced into the
models (See Figures 2, 3, and the figures in the supplementary materials).

Algorithm 3 Loop handling
Input: Proposed skeleton segments with common voxels

C′j , number of FCCs a
Output: Set of skeleton segments C with disjoint loop seg-

ments
1: Ct = ∩j∈[0,a−1]C′j
2: for j = 0 to a− 1 do
3: C′j = C′j \ Ct

4: for k = j + 1 to a− 1 do
5: C′j = C′j \ Ck

6: C = C ∪
{
C′j
}

Algorithm 4 Proposed skeletonization algorithm
Input: Set of occupied voxels V representing the object of

interest, user-supplied acceptance probability t
Output: Object skeleton C

1: Determine seed voxel v∗ and make initial curve skele-
ton C(0) = v∗

2: repeat
3: Update BFS1 labels using Alg. 5 with F(0)

A =
C(m−1)

4: Locate a proposed endpoint vt from BFS1
5: Create BFS2 labels using Alg. 5 with F(0)

A =
{vt}

6: Create C(m) by tracing paths in BFS2 labels
from existing curve skeleton vt according to
Alg. 6

7: if (Number of FCCs == 1) then
8: Accept or decline curve skeleton segments us-

ing the method of Section 3.5.1 according to
the acceptance probability parameter t. If ac-
cepted C = C ∪

{
C(m)

}
and m = m+ 1

9: else
10: Check for loops using Alg. 7.
11: until No more endpoint hypotheses are found

4 show the iterative endpoint localization method presented
in Section 3.3. The determination of prospective segments
of Section 3.4 is carried out by Lines 5-6. Finally, lines
7-10 perform the spurious segment classification and loop
handling routines described in Section 3.5. The computa-
tional complexity of the entire method is O(n

7
3). As a mat-

ter of fact, the method runs in O(||Vt|| × dmax × n), where
dmax is the largest voxel to surface distance, and ||Vt|| is
the number of proposed endpoints vt. Since ||Vt|| and dmax

tend to be orders of magnitude smaller than n for elongated
objects, the method runs extremely fast in practice. A de-
tailed analysis of the computational complexity as well as
a discussion of the topological stability of the proposed ap-
proach are included in the supplementary materials.

Table 1. Characteristics of the nine datasets used in our evaluation.
n is the number of occupied voxels/nodes, N is the number of
voxels in the grid, dmax is the largest voxel to surface distance,
and ||Vt|| is the number of proposed endpoints vt.

ID n N dmax ||Vt||
A 55,156 27,744,000 16 15
B 88,407 56,832,000 5 174
C 88,798 45,240,000 7 145
D 92,892 80,640,000 6 154
E 98,228 58,464,000 9 50
F 136,497 80,640,000 7 134
G 158,686 64,512,000 9 128
H 176,820 80,640,000 10 97
I 246,654 80,640,000 10 83

4. Experiments

We evaluated our method and four comparison ap-
proaches that reflect the state of the art on curve skeletoniza-
tion on real datasets consisting of nine different trees, de-
noted as trees A - I. These trees are real-world objects with
an elongated shape. Most of the trees are three meters or
taller, and the surfaces are noisy. The data for six out of the
nine trees was acquired outdoors, and the reconstructions
were generated using the method of [26], but other recon-
struction algorithms could be applied (e.g., [23]). Table 1
lists the main characteristics of the nine datasets. All five
methods were evaluated with respect to their accuracy and
robustness to noise as well as run times. We additionally
performed a qualitative evaluation of the performance of
our method in non-elongated synthetic models commonly
used in the evaluation of skeletonization algorithms.

The first comparison method is the classical medial-
axis thinning algorithm of [14], which maintains the Eu-
ler characteristics of the object during its execution. The
second and third comparison methods, denoted PINK skel
and PINK filter3d, are also medial-axis type thinning ap-
proaches based on the discrete bisector function [10] and
critical kernels [5]. The fourth comparison method is the
approach of Jin et al. [12, 13], discussed in Section 2.

We implemented our method in C/C++ on a machine
with a 12 core Intel Xeon(R) 2.7 GHz processor and 256 GB
RAM.4 For all the results shown in this section, the spuri-
ous branch probability, the only parameter of our algorithm,
was set to t = 1e−12. The implementation of the thin-
ning algorithm from [14] is provided through Fiji/ImageJ2
in the Skeletonize3D plugin, authored by Ignacio Arganda-
Carreras. The implementations of [10] and [5] were pro-
vided by the scripts ‘skel’ and ‘skelfilter3d’, respectively,
from the PINK library [9]. The implementation of the

4The source code is available at [27].

method of Jin et al. was kindly provided by the authors. We
did try to evaluate our datasets using the curve skeleton al-
gorithm and implementation of [8], but that approach failed
to return a skeleton. We hypothesize that this failure is a re-
sult of the thinness of some of the structures in our datasets,
which are sometimes only one voxel wide, since the discus-
sion in [8] specifically mentions that the algorithm may fail
for thin structures.

4.1. Accuracy and robustness to noise

In order to illustrate the accuracy of our method in com-
parison with the state-of-the-art approaches, Figure 2 shows
the original surface and curve skeletons computed with all
five methods for Dataset B. As expected, the thinning al-
gorithm, PINK skel, and PINK filter3d methods were not
able to deal adequately with the noise in our datasets, and
created many extra, small branches. In addition, the PINK
filter3d method removes some branches. Jin et al.’s method
performed better than the thinning algorithms with respect
to noise, although it still presented some small spurious
branches. In addition, this method is unable to deal with
loops or cycles in the original structure. Our method is ro-
bust to the noise in our datasets and also was able to deal
with loops in the curve skeleton. High-resolution images
and results for the other datasets are also available in the
supplementary materials.

(a)
Surface

(b) Thin-
ning

(c) PINK
skel

(d) PINK
filter3d

(e) Jin et
al.

(f) Our
method

Figure 2. Best viewed in color. Detailed view of the results from
Dataset B: the surface reconstruction with noise of a real tree with
a supporting metal pole, and curve skeletons computed with the
thinning algorithm, PINK skel script, PINK filter3d script, Jin et
al. method, and our proposed method. The different colors in 2f
represent the curve skeleton segments identified during the course
of the algorithm. Figures for Datasets A, the complete view of B,
and C-I are given in the supplementary materials.

We also assessed the performance of our method un-
der increasingly noisy conditions on a synthetic 3D model,
which serves as a ground truth. We iteratively add noise
to the ground truth model by randomly choosing, with uni-
form probability, (p/2)×n surface voxels which have non-
surface neighbors to be deleted and another set of the same
size to which a new neighboring voxel is added. The pa-
rameter p represents the proportion of voxels to be altered,
and in our experiments p = 0.05. For subsequent itera-
tions, we repeat the process using the voxel occupancy map
from the previous iteration such that, after nl iterations, the
model has either noisy protrusions or depressions of at most

nl voxels. A closeup view of the model without noise and
with a noise level of nl = 14 as well as the corresponding
curve skeletons computed using our method can be found
in the supplementary materials.

To quantify the effect of noise on each of the skele-
tonization methods, we compute the root mean squared er-
ror (RMSE) of the skeletons generated by each approach
in comparison with the ground truth skeleton. That is, for
each voxel in the curve skeleton of the ground truth model,
we find the closest voxel in the curve skeleton of the noisy
model and use the sum of the squared closest distances to
compute the RMSE. Figure 3 shows the corresponding re-
sults for our method and the comparison approaches. The
x-axis in the graph represents the maximum voxel noise ac-
cording to the process described in the preceding paragraph,
and the y-axis shows the RMSE in terms of voxel distances.
As the figure indicates, our method outperforms all the other
approaches by a significant margin. The second best ap-
proach is given by the method of Jin et al., which has an
average RMSE 20% higher than our method.

2 4 6 8 10 12 14

Maximum voxel noise

0

100

200

300

400

R
M

S
E

Thinning

PINK skel

Jin et al.

Our method

Figure 3. Best viewed in color. Root mean squared error of the
curve skeletons computed with the comparison methods and our
method, as compared to the ground truth curve skeleton. The
PINK filter3d method is not reported, since its minimum error
value is 3356.

4.2. Computational efficiency

Figure 4 summarizes the time performance of the meth-
ods on the nine trees. A general ordering with respect to
increasing run time is: 1) our method, 2) thinning, 3) PINK
skel, 4) PINK filter3d, and 4) the Jin et al. method. The
method proposed by Jin et al., which has as one of its com-
ponents geodesic path computation, has the longest run time
of the methods. Note that the run times of the compari-
son methods include loading and saving the results, whereas
ours does not. The loading and saving portions required to
run the thinning algorithm for dataset E, which has N = 58
million voxels, is 1.2 seconds. Since we do not have access
to the source code of Jin et al., assessing the time spent
loading and saving is difficult, but we assume that it is of
the same order of magnitude. For the PINK scripts, inter-
mediate results are loaded and saved in temporary locations,

which affects run time. Nevertheless, our curve skeletoniza-
tion method is able to compute curve skeletons one to three
orders of magnitude faster than the other methods. It exe-
cutes in less than four seconds even for very large models.

A B C D E F G H I

Dataset

10
-2

10
0

10
2

10
4

R
u
n
 t

im
e
 (

se
c
o
n
d
s)

Thinning

PINK skel

PINK filter3d

Jin et al

Our method

Figure 4. Best viewed in color. Run times of our curve skele-
tonization method on the nine datasets in comparison with the ex-
isting approaches. The vertical axis is shown on a logarithmic
scale due to the dramatic differences between our method and the
existing approaches.

4.3. Results on traditional skeletonization datasets
and influence of t on the results

While we are interested in real-world, elongated, noisy
objects, we also evaluated our method on some commonly-
used smooth models. The proposed curve skeleton method
used in the context of smooth models produced the general
structure of those objects and was also able to detect loops
when they were present, for instance for the camel and sea-
horse examples. We also performed experiments with the
only user-supplied threshold in our method. When t = 1,
no segments are discarded. The resulting curve skeleton re-
sembles a more dense version of the thinning result. When
t = 0.0001, the result resembles the Jin et al. result except
that loops are preserved. Results for both of these items are
found in the supplementary materials.

5. Conclusions
Understanding the structure of complex elongated

branching objects in the presence of noise is a challenging
problem with important real-world applications. In this pa-
per, we presented a fast and robust algorithm to compute
curve skeletons of such real-world objects. These curve
skeletons provide most of the information necessary to rep-
resent the structure of these objects. A large portion of the
paper centered on how the ideas of BFS could be exploited
to create an efficient curve skeletonization procedure. Our
approach is able to detect connected segments and performs
pruning in the course of the algorithm, so those steps do not

need to be performed separately. The small run times of less
than a few seconds make this method suitable for automa-
tion tasks where real-time decisions are required.

References
[1] AIM@Shape. Visualization virtual services. http://

visionair.ge.imati.cnr.it/, 2011. last accessed
20 January, 2016. 34

[2] C. Arcelli, G. S. di Baja, and L. Serino. Distance-driven
skeletonization in voxel images. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 33(4):709,
2011. 2

[3] C. Aslan, A. Erdem, E. Erdem, and S. Tari. Disconnected
skeleton: Shape at its absolute scale. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 30(12):2188–
2203, 2008. 1

[4] X. Bai, L. Latecki, and W. yu Liu. Skeleton pruning by
contour partitioning with discrete curve evolution. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
29(3):449–462, March 2007. 1

[5] G. Bertrand and M. Couprie. Two-dimensional parallel
thinning algorithms based on critical kernels. Journal of
Mathematical Imaging and Vision, 31(1):35–56, 2008. 2,
7

[6] T. Chaperon, F. Goulette, and C. Laurgeau. Extracting cylin-
ders in full 3D data using a random sampling method and
the Gaussian image. In Proceedings of the Vision Modeling
and Visualization Conference 2001, VMV ’01, pages 35–42,
2001. 2

[7] N. D. Cornea, D. Silver, and P. Min. Curve-skeleton prop-
erties, applications, and algorithms. IEEE Transactions on
Visualization and Computer Graphics, 13(3):530–548, May
2007. 1

[8] N. D. Cornea, D. Silver, X. Yuan, and R. Balasubramanian.
Computing hierarchical curve-skeletons of 3D objects. The
Visual Computer, 21(11):945–955, 2005. 7

[9] M. Couprie. Pink image processing library. http://
pinkhq.com/, December 2013. last accessed 20 January,
2016. 7

[10] M. Couprie, D. Coeurjolly, and R. Zrour. Discrete bisector
function and euclidean skeleton in 2D and 3D. Image and
Vision Computing, 25(10):1543 – 1556, 2007. 2, 7

[11] W.-B. Goh. Strategies for shape matching using skeletons.
Computer Vision and Image Understanding, 110(3):326 –
345, 2008. Similarity Matching in Computer Vision and
Multimedia. 1

[12] D. Jin, K. Iyer, E. Hoffman, and P. Saha. A new ap-
proach of arc skeletonization for tree-like objects using min-
imum cost path. In Pattern Recognition (ICPR), 2014 22nd
International Conference on, pages 942–947, Aug 2014. 2, 7

[13] D. Jin, K. S. Iyer, C. Chen, E. A. Hoffman, and P. K. Saha. A
robust and efficient curve skeletonization algorithm for tree-
like objects using minimum cost paths. Pattern recognition
letters, 76:32–40, 2016. 2, 7

[14] T.-C. Lee, R. L. Kashyap, and C.-N. Chu. Building skele-
ton models via 3-d medial surface/axis thinning algorithms.

CVGIP: Graph. Models Image Process., 56(6):462–478,
Nov. 1994. 7

[15] Y.-J. Liu, J.-B. Zhang, J.-C. Hou, J.-C. Ren, and W.-Q.
Tang. Cylinder detection in large-scale point cloud of
pipeline plant. Visualization and Computer Graphics, IEEE
Transactions on, 19(10):1700–1707, Oct 2013. 2

[16] D. Macrini, K. Siddiqi, and S. Dickinson. From skeletons
to bone graphs: Medial abstraction for object recognition.
In Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, pages 1–8, June 2008. 1

[17] H. Medeiros, D. Kim, J. Sun, H. Seshadri, S. A. Akbar, N. M.
Elfiky, and J. Park. Modeling dormant fruit trees for agricul-
tural automation. Journal of Field Robotics, pages n/a–n/a,
2016. 2

[18] A. Meijster, J. B. Roerdink, and W. H. Hesselink. A general
algorithm for computing distance transforms in linear time.
In Mathematical Morphology and its applications to image
and signal processing, pages 331–340. Springer, 2002. 4, 12

[19] B. Miklos, J. Giesen, and M. Pauly. Discrete scale axis rep-
resentations for 3D geometry. In ACM SIGGRAPH 2010
Papers, SIGGRAPH ’10, pages 101:1–101:10, New York,
NY, USA, 2010. ACM. 1

[20] P. Min. Binvox. http://www.patrickmin.com/,
2015. last accessed 20 January, 2016. 34

[21] A. S. Montero and J. Lang. Skeleton pruning by con-
tour approximation and the integer medial axis transform.
Computers & Graphics, 36(5):477 – 487, 2012. Shape Mod-
eling International (SMI) Conference 2012. 1

[22] F. Nooruddin and G. Turk. Simplification and re-
pair of polygonal models using volumetric techniques.
Visualization and Computer Graphics, IEEE Transactions
on, 9(2):191–205, April 2003. 34

[23] M. P. Pound, A. P. French, J. A. Fozard, E. H. Murchie, and
T. P. Pridmore. A patch-based approach to 3d plant shoot
phenotyping. Machine Vision and Applications, 27(5):767–
779, Jul 2016. 7

[24] T. Rabbani and F. Van Den Heuvel. Efficient hough trans-
form for automatic detection of cylinders in point clouds.
ISPRS WG III/3, III/4, 3:60–65, 2005. 2

[25] J. Silvela and J. Portillo. Breadth-first search and its applica-
tion to image processing problems. Image Processing, IEEE
Transactions on, 10(8):1194–1199, Aug 2001. 12

[26] A. Tabb. Shape from silhouette probability maps: Recon-
struction of thin objects in the presence of silhouette extrac-
tion and calibration error. In Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on, pages 161–
168, June 2013. 7

[27] A. Tabb. Code from: Fast and robust curve skeletonization
for real-world elongated objects. http://dx.doi.org/
10.15482/USDA.ADC/1399689, 2017. 2, 7

[28] A. Tabb and H. Medeiros. A robotic vision system to mea-
sure tree traits. In IEEE RSJ International Conference on
Intelligent Robots and Systems, 2017. 1

[29] T.-T. Tran, V.-T. Cao, and D. Laurendeau. Extraction of
cylinders and estimation of their parameters from point
clouds. Computers & Graphics, 46(0):345 – 357, 2015.
Shape Modeling International 2014. 2

http://visionair.ge.imati.cnr.it/
http://visionair.ge.imati.cnr.it/
http://pinkhq.com/
http://pinkhq.com/
http://www.patrickmin.com/
http://dx.doi.org/10.15482/USDA.ADC/1399689
http://dx.doi.org/10.15482/USDA.ADC/1399689

[30] Y.-S. Wang and T.-Y. Lee. Curve-skeleton extraction us-
ing iterative least squares optimization. Visualization and
Computer Graphics, IEEE Transactions on, 14(4):926–936,
July 2008. 2

[31] A. Ward and G. Hamarneh. The groupwise medial axis
transform for fuzzy skeletonization and pruning. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
32(6):1084–1096, June 2010. 1

Fast and robust curve skeletonization for
real-world elongated objects: Supplementary

materials

6. Computational complexity
In this section, we analyze the computational complex-

ity of the algorithms in this paper. For reference ease, we
include all of the algorithms from the main paper.

Algorithm 5 Modified BFS Algorithm

1: while |F(k)
A | > 0 do

2: for each voxel vi ∈ F(k)
A do

3: for each voxel vj ∈ Ni such that (lj > li) do
4: lj = min(lj , li + wj + ||vj − vi||)
5: F(k) = F(k)

A ∪ F(k)
B

6: N(k) = {vj |lj > li,∀vj ∈ Ni,∀vj /∈ F(k),∀vi ∈
F(k)}

7: lmin = minvj∈N(k) lj

8: F(k+1)
A = {vj |li < lmin,∀vi ∈ F(k),∀vj ∈ N(k)}

9: F(k+1)
B = {vi|li ≥ lmin,∀vi ∈ F(k), |Ni ∩ N(k)| >

0}
10: k = k + 1

6.1. Complexity of the modified BFS algorithm

We now analyze the computational complexity of Algo-
rithm 5. Note that a voxel is a member of F(k)

A for any k
exactly once. On line 8, voxels in F(k+1)

A ⊆ N(k) and a
voxel in N(k) cannot be in F(k): F(k) ∩N(k) = ∅ (from line
6). In addition, the condition lj > li ensures that a voxel
in F(k+1)

A has not already been discovered, meaning that
voxels in F(k+1)

A cannot be members of the frontier F(m)

at any previous iteration m, m = 0, 1, ..., k − 1. Hence
F(k)
A ∩ F(j)

A = ∅ for k 6= j. Finally, since all voxels are
eventually discovered, the sets F(k)

A form a partition of V,
implying ⋃

k

F(k)
A = V (S1)

and ∑
k

|F(k)
A | = |V| = n (S2)

Consequently, for all iterations of Algorithm 5, line 2 will
be performed n times.

On the other hand, a voxel vi may be a member of F(k)
B

multiple times, waiting for the condition li < lmin to be true
so that its neighbors are moved into F(k)

A (line 8). Because
the conditions for computing set N(k), and therefore lmin

(lines 6 - 7), for the members of F(k)
B are dependent on the

Algorithm 6 Determination of curve skeleton segment from
BFS2 and di

1: vc = vs,1
2: C(m) = {vs,1}
3: while (vc 6= vt) ∧ (vc /∈ C) do
4: Determine d∗ = max

vi∈Nc∧lc>li
(di) where di is the

distance transform of vi
5: Compute vn = arg min

vj∈N∗
c

(lj) where lj is the BFS2

label of vj and N∗c = {vj |∃vj ∈ Nc, dj = d∗}
6: C(m) = C(m) ∪ {vn}
7: vc = vn

Algorithm 7 Loop handling
1: Ct = ∩j∈[0,a−1]C′j
2: for j = 0 to a− 1 do
3: C′j = C′j \ Ct

4: for k = j + 1 to a− 1 do
5: C′j = C′j \ Ck

6: C = C ∪
{
C′j
}

Algorithm 8 Proposed skeletonization algorithm
1: Determine seed voxel v∗ and make initial curve skele-

ton C(0) = v∗

2: repeat
3: Update BFS1 labels using Alg. 5 with F(0)

A =
C(m−1)

4: Locate a proposed endpoint vt from BFS1
5: Create BFS2 labels using Alg. 5 with F(0)

A = {vt}
6: Create C(m) by tracing paths in BFS2 labels from

existing curve skeleton vt according to Alg. 6
7: if (Number of FCCs == 1) then
8: Accept or decline curve skeleton segments using

classification method. If accepted C = C∪
{
C(m)

}
and m = m+ 1

9: else
10: Check for loops using Alg. 7.
11: until No more endpoint hypotheses are found

composition of F(k)
A , lmin cannot be stored from previous

iterations and still be relevant.
Finding set N(k) in Algorithm 5 takes time |F(k)

A |+|F
(k)
B |

per iteration k, and line 7 can be computed while N is found.
Lines 8 and 9 also take time |F(k)

A |+ |F
(k)
B | per iteration k.

Since we know from Equation S2 that
∑

k |F
(k)
A | = n,

the asymptotic lower bound is Ω(n), and it is a strict bound.
For instance, consider F(0)

A contains one voxel, which is an
endpoint of a 1-dimensional line in 3D space. In this case,
|F(k)

A | = 1 and |F(k)
B | = 0 for all k, and the maximum value

of k is n.
Determining the value of

∑
k |F

(k)
B | in general is prob-

lematic as it depends strongly on the shape involved, on the
composition of F(0)

A , and weights wi.

6.2. Complexity of modified BFS algorithm with
zero weights

The Euclidean distance between neighboring voxels is
d ∈ {1,

√
2,
√

3}. We claim that a voxel can only be in
one of the frontier sets at most three times; first, it enters
the frontier through F(k)

A , and if the voxel remains in the
frontier, the only other sets it may belong to are F(k+1)

B and
F(k+2)
B , at which point it exits the frontier sets. Hence∑

k

(|F(k)
A |+ |F

(k)
B |) ≤ 3n (S3)

The asymptotic upper bound of Algorithm 5 is then O(n).
Algorithm 5 using zero weights has many of the same

characteristics as the breadth-first distance transform de-
scribed in Section V of [25]. One major difference is that
in [25] neighbors are assumed to have the same distance
from each other, which is not an assumption we share when
working with 26-connected voxels in 3D. However, the
algorithm with zero weights retains the asymptotic upper
bound of O(n) as the method in [25].

6.3. Complexity of modified BFS with non-zero
weights

The complexity of the modified BFS algorithm with non-
zero weights is O(ndmax), assuming that the weights are
computed based on a distance transform wi = dmax − di.

Our discussion of Algorithm 5 for zero weights pro-
vided an asymptotic upper bound O(n), and determining
this bound came down to determining how many times a
voxel could possibly be a member of the frontier. For the
analysis of Algorithm 5 when weights are non-zero, we re-
turn to similar questions. From Algorithm 5, voxels are in
FA once, and are in FB multiple times, until the condition
li < l

(k)
min is satisfied.

Let us determine the maximum number of times a voxel
resides in the frontier sets. The maximum distance label
dmax is the maximum difference between any two distance
labels, and the L2 norms between any two neighboring vox-
els belong to the set {1,

√
2,
√

3}. Then, the maximum
number of times a voxel can possibly be in the frontier sets
is 3dmax, leading to asymptotic upper bound O(ndmax).
We consider shapes that produce the largest values of dmax

n .
The shape that maximizes dmax

n is a sphere. In that sce-
nario, dmax is the radius of the sphere, and the relationship
between n and dmax is n = 4

3π (dmax)
3. Then, perform-

ing the relevant substitutions we have the asymptotic upper
bound of this step as O(n

4
3).

Figure S1. Example of a shape with a high proportion of proposed
endpoints t relative to n.

6.4. Computational complexity of the curve skeleton
method

We now consider the complexity of the curve skeleton
method of Algorithm 8, excluding the complexity of the dis-
tance transform step, which is O(n) using the approach of
[18]. Let the number of proposed endpoints, or iterations
of Algorithm 8, be ||Vt||. Computing the BFS1 labels (step
2.1) and BFS2 labels (step 3.1) per iteration has asymptotic
upper bound O(dmaxn). The computation of the BFS1 and
BFS2 labels is repeated ||Vt|| times, givingO(||Vt||dmaxn)
as an upper bound. As in Section 6.3, we try to deter-
mine shapes that maximize ||Vt||

n to find an asymptotic up-
per bound on ||Vt||. We have given an example of a particu-
lar shape in Figure S1 where ||Vt|| = 2

3 (n+ 2). More gen-
erally, the number of extremities can be no larger than the
number of voxels, hence we can assume that ||Vt|| = O(n).
In summary, the asymptotic upper bound of the complete
algorithm is O(n

7
3).

We note that in our experiments involving elongated ob-
jects, both ||Vt|| and dmax are extremely small relative to
n as shown in Table 1. In those datasets, the maximum
value of ||Vt|| relative to n is ||Vt|| ≤ 0.002n (Dataset
B), and the greatest value of dmax is 16, or in terms of
n, dmax ≤ 0.0003n (Dataset A). Consequently, while the
asymptotic upper bound is greater than quadratic, if ||Vt||
and dmax can be assumed to be small constants as in the
case of elongated objects, in practice the algorithm runs
quickly. This is highlighted in Figure S2, which shows the
runtime of our method as a function of the number of oc-
cupied voxels n for each of the datasets in Table 1. As the
figure indicates, despite a four times increase in the num-
ber of occupied voxels between the smallest and the largest
dataset, the run time of our algorithm increases slowly.

7. Topological Stability

There are three steps in the algorithm where decisions
may be made deterministically or randomly in the case of
equal labels:(1) the selection of v∗ in Section 3.2, (2) end-
point candidates vt in 3.3.2, and (3) frontier connecting
voxel vs,1 in 3.4.2. If topological stability is desired, the

0.5 1 1.5 2 2.5

Number of occupied voxels (n) 10
5

0.5

1

1.5

2

2.5

3

3.5

4
R

u
n
 t

im
e

(s
ec

o
n
d
s)

Figure S2. Execution time of our algorithm as a function of the
number of occupied pixels in each dataset.

Table 1. Characteristics of the nine datasets used in our evaluation.
n is the number of occupied voxels/nodes, N is the number of
voxels in the grid, dmax is the largest voxel to surface distance,
and ||Vt|| is the number of proposed endpoints vt.

ID n N dmax ||Vt||
A 55,156 27,744,000 16 15
B 88,407 56,832,000 5 174
C 88,798 45,240,000 7 145
D 92,892 80,640,000 6 154
E 98,228 58,464,000 9 50
F 136,497 80,640,000 7 134
G 158,686 64,512,000 9 128
H 176,820 80,640,000 10 97
I 246,654 80,640,000 10 83

following protocol could be employed to deterministically
select a voxel when there are multiple voxels with the same
label. The voxels of equal label are placed into a vector, and
then the x, y, z coordinates would be sorted as specified by
the user. One such ordering would be to sort the coordinates
by x value, and then in case of ties by y value, and then in
case of ties by z. This kind of repeatable ordering would
produce reproducible results that would be more topologi-
cally stable than a random ordering.

8. Additional figures for loop handling step
(section 3.5.2 in the main paper)

Figure S3 shows the loop handling procedure. As shown
in Figure S3c, only regions with loops are recovered.

(a)

(b)

(c)
Figure S3. Best viewed in color. An example of the loop handling
procedure. S3a shows the surface in blue, and S3b is the existing
curve skeleton in red. Fig. S3c shows the result after Algorithm 7
is performed.

9. Additional Results
9.1. Simulated noise experiment

Figure S4 shows the models used for the simulated noise
experiment, and computed curve skeletons using our pro-
posed method.

As in the experiments with the real datasets, the compar-
ison methods are characterized by greater numbers of spu-
rious voxels than our method as the noise level increases.
We represent this in Figure S6, which shows the number of
voxels in the curve skeletons for each of the methods as a
function of the noise level. The figure shows that, as the
noise level rises, the number of voxels also increases for all
the methods. For the thinning and PINK methods, this in-
crease is dramatic, in some cases up to 9 times the initial
value. The Jin et al. method also shows some additional
voxels as the noise rises, particularly for noise levels higher
than 6, showing a total increase of approximately 50% from
zero noise to noise level 14. Our method has the least addi-
tional voxels, showing a total increase of only 4%.

9.2. Tree models acquired in field conditions

Figures S7 to S24 show high resolution images of the
nine real trees used to evaluate our method as described in
Table 1 of the main paper. See the discussion in the main
paper in the Experiments section for a more detailed de-
scription of the figures below.

(a) Ground truth model (b) Curve skeleton of S4a

(c) Noise iteration 14 (d) Curve skeleton of S4c
Figure S4. Best viewed in color. Detail of a synthetic model of a tree without noise S4a and with noise S4c at iteration 14. The curve
skeleton of the ground truth is given in the top row, while curve skeleton of the noisy object is given in the second row.

(a) Original sur-
face

(b) Ground truth
curve skeleton

(c) Thinning (d) PINK skel (e) PINK filter3d (f) Jin et al. (g) Our method

Figure S5. Synthetic model used in the evaluation of the robustness to noise and the corresponding outputs of each algorithm for a noise
level of 14. Note that in the presence of noise the skeletons generated by the thinning algorithm as well as the two PINK methods contain
a substantially higher number of voxels and no longer consist of thin one-dimensional segments.

2 4 6 8 10 12 14
Maximum voxel noise

0.5

1

1.5

2

2.5

N
um

be
r

of
 v

ox
el

s

104

Thinning
PINK skel
PINK filter3d
Jin et al.
Our method

Figure S6. Best viewed in color. Number of voxels in the curve
skeletons of the synthetic model as a function of the noise level.
The vertical axis is shown on a logarithmic scale due to the dra-
matic differences between our method and most of the comparison
approaches.

(a
)S

ur
fa

ce
(b

)T
hi

nn
in

g
(c

)P
IN

K
sk

el
Fi

gu
re

S7
.B

es
tv

ie
w

ed
in

co
lo

r.
O

ri
gi

na
ls

ur
fa

ce
,c

om
pa

ri
so

n
cu

rv
e

sk
el

et
on

s,
an

d
cu

rv
e

sk
el

et
on

co
m

pu
te

d
w

ith
ou

rm
et

ho
d,

fo
rD

at
as

et
A

(p
ar

t1
of

2)
.

(a
)P

IN
K

fil
te

r3
d

(b
)J

in
et

al
.

(c
)O

ur
m

et
ho

d
Fi

gu
re

S8
.B

es
tv

ie
w

ed
in

co
lo

r.
O

ri
gi

na
ls

ur
fa

ce
,c

om
pa

ri
so

n
cu

rv
e

sk
el

et
on

s,
an

d
cu

rv
e

sk
el

et
on

co
m

pu
te

d
w

ith
ou

rm
et

ho
d,

fo
rD

at
as

et
A

(p
ar

t2
of

2)
.

(a
)S

ur
fa

ce
(b

)T
hi

nn
in

g
(c

)P
IN

K
sk

el
Fi

gu
re

S9
.B

es
tv

ie
w

ed
in

co
lo

r.
O

ri
gi

na
ls

ur
fa

ce
,c

om
pa

ri
so

n
cu

rv
e

sk
el

et
on

s,
an

d
cu

rv
e

sk
el

et
on

co
m

pu
te

d
w

ith
ou

rm
et

ho
d,

fo
rD

at
as

et
B

(p
ar

t1
of

2)
.

(a
)P

IN
K

fil
te

r3
d

(b
)J

in
et

al
.

(c
)O

ur
m

et
ho

d
Fi

gu
re

S1
0.

B
es

tv
ie

w
ed

in
co

lo
r.

O
ri

gi
na

ls
ur

fa
ce

,c
om

pa
ri

so
n

cu
rv

e
sk

el
et

on
s,

an
d

cu
rv

e
sk

el
et

on
co

m
pu

te
d

w
ith

ou
rm

et
ho

d,
fo

rD
at

as
et

B
(p

ar
t2

of
2)

.

(a
)S

ur
fa

ce
(b

)T
hi

nn
in

g
(c

)P
IN

K
sk

el
Fi

gu
re

S1
1.

B
es

tv
ie

w
ed

in
co

lo
r.

O
ri

gi
na

ls
ur

fa
ce

,c
om

pa
ri

so
n

cu
rv

e
sk

el
et

on
s,

an
d

cu
rv

e
sk

el
et

on
co

m
pu

te
d

w
ith

ou
rm

et
ho

d,
fo

rD
at

as
et

C
(p

ar
t1

of
2)

.

(a
)P

IN
K

fil
te

r3
d

(b
)J

in
et

al
.

(c
)O

ur
m

et
ho

d
Fi

gu
re

S1
2.

B
es

tv
ie

w
ed

in
co

lo
r.

O
ri

gi
na

ls
ur

fa
ce

,c
om

pa
ri

so
n

cu
rv

e
sk

el
et

on
s,

an
d

cu
rv

e
sk

el
et

on
co

m
pu

te
d

w
ith

ou
rm

et
ho

d,
fo

rD
at

as
et

C
(p

ar
t2

of
2)

.

(a
)S

ur
fa

ce
(b

)T
hi

nn
in

g
(c

)P
IN

K
sk

el
Fi

gu
re

S1
3.

B
es

tv
ie

w
ed

in
co

lo
r.

O
ri

gi
na

ls
ur

fa
ce

,c
om

pa
ri

so
n

cu
rv

e
sk

el
et

on
s,

an
d

cu
rv

e
sk

el
et

on
co

m
pu

te
d

w
ith

ou
rm

et
ho

d,
fo

rD
at

as
et

D
(p

ar
t1

of
2)

.

(a
)P

IN
K

fil
te

r3
d

(b
)J

in
et

al
.

(c
)O

ur
m

et
ho

d
Fi

gu
re

S1
4.

B
es

tv
ie

w
ed

in
co

lo
r.

O
ri

gi
na

ls
ur

fa
ce

,c
om

pa
ri

so
n

cu
rv

e
sk

el
et

on
s,

an
d

cu
rv

e
sk

el
et

on
co

m
pu

te
d

w
ith

ou
rm

et
ho

d,
fo

rD
at

as
et

D
(p

ar
t2

of
2)

.

(a
)S

ur
fa

ce
(b

)T
hi

nn
in

g
(c

)P
IN

K
sk

el
Fi

gu
re

S1
5.

B
es

tv
ie

w
ed

in
co

lo
r.

O
ri

gi
na

ls
ur

fa
ce

,c
om

pa
ri

so
n

cu
rv

e
sk

el
et

on
s,

an
d

cu
rv

e
sk

el
et

on
co

m
pu

te
d

w
ith

ou
rm

et
ho

d,
fo

rD
at

as
et

E
(p

ar
t1

of
2)

.

(a
)P

IN
K

fil
te

r3
d

(b
)J

in
et

al
.

(c
)O

ur
m

et
ho

d
Fi

gu
re

S1
6.

B
es

tv
ie

w
ed

in
co

lo
r.

O
ri

gi
na

ls
ur

fa
ce

,c
om

pa
ri

so
n

cu
rv

e
sk

el
et

on
s,

an
d

cu
rv

e
sk

el
et

on
co

m
pu

te
d

w
ith

ou
rm

et
ho

d,
fo

rD
at

as
et

E
(p

ar
t2

of
2)

.

(a
)S

ur
fa

ce
(b

)T
hi

nn
in

g
(c

)P
IN

K
sk

el
Fi

gu
re

S1
7.

B
es

tv
ie

w
ed

in
co

lo
r.

O
ri

gi
na

ls
ur

fa
ce

,c
om

pa
ri

so
n

cu
rv

e
sk

el
et

on
s,

an
d

cu
rv

e
sk

el
et

on
co

m
pu

te
d

w
ith

ou
rm

et
ho

d,
fo

rD
at

as
et

F
(p

ar
t1

of
2)

.

(a
)P

IN
K

fil
te

r3
d

(b
)J

in
et

al
.

(c
)O

ur
m

et
ho

d
Fi

gu
re

S1
8.

B
es

tv
ie

w
ed

in
co

lo
r.

O
ri

gi
na

ls
ur

fa
ce

,c
om

pa
ri

so
n

cu
rv

e
sk

el
et

on
s,

an
d

cu
rv

e
sk

el
et

on
co

m
pu

te
d

w
ith

ou
rm

et
ho

d,
fo

rD
at

as
et

F
(p

ar
t2

of
2)

.

(a
)S

ur
fa

ce
(b

)T
hi

nn
in

g
(c

)P
IN

K
sk

el
Fi

gu
re

S1
9.

B
es

tv
ie

w
ed

in
co

lo
r.

O
ri

gi
na

ls
ur

fa
ce

,c
om

pa
ri

so
n

cu
rv

e
sk

el
et

on
s,

an
d

cu
rv

e
sk

el
et

on
co

m
pu

te
d

w
ith

ou
rm

et
ho

d,
fo

rD
at

as
et

G
(p

ar
t1

of
2)

.

(a
)P

IN
K

fil
te

r3
d

(b
)J

in
et

al
.

(c
)O

ur
m

et
ho

d
Fi

gu
re

S2
0.

B
es

tv
ie

w
ed

in
co

lo
r.

O
ri

gi
na

ls
ur

fa
ce

,c
om

pa
ri

so
n

cu
rv

e
sk

el
et

on
s,

an
d

cu
rv

e
sk

el
et

on
co

m
pu

te
d

w
ith

ou
rm

et
ho

d,
fo

rD
at

as
et

G
(p

ar
t2

of
2)

.

(a
)S

ur
fa

ce
(b

)T
hi

nn
in

g
(c

)P
IN

K
sk

el
Fi

gu
re

S2
1.

B
es

tv
ie

w
ed

in
co

lo
r.

O
ri

gi
na

ls
ur

fa
ce

,c
om

pa
ri

so
n

cu
rv

e
sk

el
et

on
s,

an
d

cu
rv

e
sk

el
et

on
co

m
pu

te
d

w
ith

ou
rm

et
ho

d,
fo

rD
at

as
et

H
(p

ar
t1

of
2)

.

(a
)P

IN
K

fil
te

r3
d

(b
)J

in
et

al
.

(c
)O

ur
m

et
ho

d
Fi

gu
re

S2
2.

B
es

tv
ie

w
ed

in
co

lo
r.

O
ri

gi
na

ls
ur

fa
ce

,c
om

pa
ri

so
n

cu
rv

e
sk

el
et

on
s,

an
d

cu
rv

e
sk

el
et

on
co

m
pu

te
d

w
ith

ou
rm

et
ho

d,
fo

rD
at

as
et

H
(p

ar
t2

of
2)

.

(a
)S

ur
fa

ce
(b

)T
hi

nn
in

g
(c

)P
IN

K
sk

el
Fi

gu
re

S2
3.

B
es

tv
ie

w
ed

in
co

lo
r.

O
ri

gi
na

ls
ur

fa
ce

,c
om

pa
ri

so
n

cu
rv

e
sk

el
et

on
s,

an
d

cu
rv

e
sk

el
et

on
co

m
pu

te
d

w
ith

ou
rm

et
ho

d,
fo

rD
at

as
et

I(
pa

rt
1

of
2)

.

(a
)P

IN
K

fil
te

r3
d

(b
)J

in
et

al
.

(c
)O

ur
m

et
ho

d
Fi

gu
re

S2
4.

B
es

tv
ie

w
ed

in
co

lo
r.

O
ri

gi
na

ls
ur

fa
ce

,c
om

pa
ri

so
n

cu
rv

e
sk

el
et

on
s,

an
d

cu
rv

e
sk

el
et

on
co

m
pu

te
d

w
ith

ou
rm

et
ho

d,
fo

rD
at

as
et

I(
pa

rt
2

of
2)

.

9.3. Computer graphics models

The curve skeleton algorithm is demonstrated on
commonly-used computer graphics models in Figures S25-
S25. Surfaces shown in S25a to S28a provided courtesy
of INRIA, owner of S28c unknown, all via AIM@SHAPE-
VISIONAIR Shape Repository [1]. All models were con-
verted from mesh to voxels using the algorithm of [22] as
implemented in [20].

9.4. Influence of parameter t on results

We performed some experiments with the one user-
supplied threshold, t in our method, and show results in
Figure S29. When t = 1, no segments are discarded. The
resulting curve skeleton resembles a more dense version of
the thinning result. When t = 0.0001, the result resem-
bles the Jin et al. result except that loops are preserved.
All results generated in this paper for the proposed method,
except in this section, were generated with t = 1e−12. Con-
sequently, different values of tmay be chosen depending on
the application.

10. Additional results without comparisons
To further illustrate the performance of our approach,

Figures S30 to S39 show additional high resolution images
of results obtained using our method.

(a) Surface (b) Skeleton

(c) Surface (d) Skeleton
Figure S25. Original surfaces and skeletons computed with our method.

(a) Surface (b) Skeleton

(c) Surface (d) Skeleton
Figure S26. Original surfaces and skeletons computed with our method.

(a) Surface (b) Skeleton

(c) Surface (d) Skeleton
Figure S27. Original surfaces and skeletons computed with our method.

(a) Surface (b) Skeleton

(c) Surface (d) Skeleton
Figure S28. Original surfaces and skeletons computed with our method.

(a) Original surface (b) Our method, t = 1

(c) Our method, t = 0.0001 (d) Our method, t = 1e−12

Figure S29. Original surface from Dataset B and curve skeletons computed with our method, with varying values of t.

(a) Surface (b) Our method
Figure S30. Best viewed in color. Original surface and curve skeleton computed with our method.

(a) Surface (b) Our method
Figure S31. Best viewed in color. Original surface and curve skeleton computed with our method.

(a) Surface (b) Our method
Figure S32. Best viewed in color. Original surface and curve skeleton computed with our method.

(a) Surface (b) Our method
Figure S33. Best viewed in color. Original surface and curve skeleton computed with our method.

(a) Surface (b) Our method
Figure S34. Best viewed in color. Original surface and curve skeleton computed with our method.

(a) Surface (b) Our method
Figure S35. Best viewed in color. Original surface and curve skeleton computed with our method.

(a) Surface (b) Our method
Figure S36. Best viewed in color. Original surface and curve skeleton computed with our method.

(a) Surface (b) Our method
Figure S37. Best viewed in color. Original surface and curve skeleton computed with our method.

(a) Surface (b) Our method
Figure S38. Best viewed in color. Original surface and curve skeleton computed with our method.

(a) Surface (b) Our method
Figure S39. Best viewed in color. Original surface and curve skeleton computed with our method.

