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Abstract. The semantic segmentation produced by most state-of-the-
art methods does not show satisfactory adherence to object boundaries.
Methods such as fully-connected conditional random fields (CRFs) can
significantly refine segmentation predictions. However, they rely on su-
pervised parameter optimization that depends upon specific datasets and
predictor modules. We propose an unsupervised method for semantic seg-
mentation refinement that takes as input the confidence scores generated
by a segmentation network and re-labels pixels with low confidence levels.
More specifically, a region growing mechanism aggregates these pixels to
neighboring areas with high confidence scores and similar appearance. To
minimize the impact of high-confidence prediction errors, our algorithm
performs multiple growing steps by Monte Carlo sampling initial seeds
in high-confidence regions. Our method provides both running time and
segmentation improvements comparable to state-of-the-art refinement
approaches for semantic segmentation, as demonstrated by evaluations
on multiple publicly available benchmark datasets.

Keywords: Segmentation refinement - instance semantic segmentation
- unsupervised post-processing.

1 Introduction

The identification of the objects present in an image is a primary goal of com-
puter vision. Such a determination can be carried out at different levels of gran-
ularity, which correspond to four well-known subproblems: image classification,
object detection, semantic segmentation, and instance segmentation. These sub-
problems aim to achieve increasingly complex goals and have therefore been
addressed with different levels of success.

In recent years, the combination of deep Convolutional Neural Networks
(CNN) and increasingly larger publicly available datasets has led to substan-
tial improvements to the state of the art in image classification [1,2]. For seg-
mentation tasks, however, the performance of conventional CNN architectures is
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limited by the typical downsampling (pooling) intrinsic to such networks. Down-
sampling is employed to learn hierarchical features, but it ultimately leads to
imprecise, coarse segmentation in scenarios that require pixel-wise predictions.
Strategies including atrous convolutions [3] and upsampling [4-6] have been pro-
posed to address this limitation, but the segmentation they produce still tend
not to be finely aligned with the boundaries of the objects. Post-processing ap-
proaches such as conditional random fields (CRFs) [3, 7] have been successful in
segmentation refinement, but their performance depends on proper optimization
of parameters for each specific dataset and predictor module being used.

In this paper, we propose the Region Growing Refinement (RGR) algorithm,
an unsupervised and easily generalizable post-processing module that performs
appearance-based region growing to refine the predictions generated by a CNN
for semantic segmentation. Based on the classification scores available from the
detector, our method first divides the image into three regions: high confidence
background, high confidence object, and uncertainty region. The pixels within
the uncertainty region, which are the ones that tend to be misclassified by CNN-
based methods, are then labeled by means of region growing. We apply Monte
Carlo sampling to select initial seeds from the high confidence regions, which
are then grown according to a distance metric computed in the 5-D space of
spatial and color coordinates. Our model has the advantage of not requiring any
dataset-specific parameter optimization, working in a fully unsupervised manner.

We report experiments using different CNNs, datasets and baselines. We first
employ the Fully Convolutional Instance-aware Semantic Segmentation (FCIS)
algorithm [8] as a predictor module as well as the baseline for our perfor-
mance evaluation. Since the ground truth annotations composing the MS COCO
dataset contain non-negligible inaccuracies in terms of boundary adherence, we
also assess RGR efficacy on the PASCAL VOC 2012 [9] validation set an on
selected sequences from the DAVIS dataset [10]. Compared to the first two
datasets, annotations provided for the DAVIS dataset are more fine-grained,
with tighter boundary adherence. As a result, in addition to relatively small
increases in segmentation accuracy for the MS COCO (4+1.5% in AP) and the
PASCAL datasets (+0.5% in mAP%), we report significantly better results for
the DAVIS sequences (+3.2% in J(IoU)%), which more realistically reflect the
segmentation improvement observed through qualitative (visual) inspection.

We also compare the RGR algorithm against the state-of-the-art but super-
vised methods dense CRF [7] and DT-EdgeNet [11], for refinement of Deeplab
[3] predictions. RGR provides both running time and segmentation refinement
performance comparable to the optimized versions of both supervised methods,
but without requiring neither dataset- nor model-specific fine-tuning.

2 Related Work

The relatively recent development of CNNs trained on large publicly available
datasets represented an inflection point in image understanding research. Com-
pared to the period when models based on hand-engineered features (e.g. HOG
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[12], SIFT [13]) were the norm, currently the state of the art in object recognition
tasks is being improved at a dramatically faster pace [2].

However, traditional CNN-based methods that are effective for image clas-
sification and object detection present limitations for segmentation tasks. The
combination of max-pooling and striding operations constitute a standard strat-
egy for learning hierarchical features, which are a determining factor in the
success of deep learning models. They explore the transition invariance favored
by image-level labeling tasks, i.e., the fact that only the presence of an object
matters, not its location. Such premise, however, does not hold for pixel-dense
classification tasks, which require precise object localization. As pointed out by
Chen et al. in [3], such spatial insensitivity and image downsampling inherent to
conventional CNNs are two major hindering factors for their performance in im-
age segmentation. An especially noticeable effect is that these methods generate
coarse segmentation masks with limited boundary adherence.

One particularly successful strategy for segmentation tasks is the concept of
fully convolutional networks (FCNs) [4]. In FCNs, the traditionally fully con-
nected layers at the end of conventional CNNs are replaced by convolutional
layers, which upsample the feature maps to generate a pixel-dense prediction.
Different upsampling or decoding approaches have been proposed, including the
use of deconvolution layers [4, 14], and encoder-decoder architectures with skip-
layer connections [5,6,15,16]. Other methods focus on reducing the downsam-
pling rate. The Deeplab architecture [3] is one such method in which the concept
of dilated (or atrous) convolutions is successfully employed to reduce the down-
sampling rate from 1/32 to 1/8.

A variation of the semantic segmentation problem is instance segmentation,
which requires detecting and segmenting individual object instances. Coarse seg-
mentations significantly hamper this type of task, since neighboring instances of
objects of the same class are frequently merged into a single segmentation. Dai
et al. in [17] introduced the concept of instance-sensitive FCNs, in which a FCN
is designed to compute score maps that determine the likelihood that a pixel
belongs to a relative position (e.g. right-upper corner) of an object instance.
FCIS [8] is an extension of that approach, which achieved the state-of-the-art
performance and won the COCO 2016 segmentation competition.

In addition to adjustments in CNN architectures, multiple works have inves-
tigated the use of low-level information strategies to construct models for object
detection and semantic segmentation. Girschick et al. in [18] introduced the
model known as RCNN that performs object detection by evaluating multiple
region proposals. In RCNN, the region proposals are generated using Selective
Search [19], which consists of merging a set of small regions [20] based on different
similarity measures, an approach closely related to the concept of superpixels.

Superpixels are perceptually meaningful clusters of pixels, which are grouped
based on color similarity and other low-level properties. Stutz et al. [21] provide
a review of state-of-the-art superpixel approaches. One of the most widely-used
methods is the Simple Linear Iterative Clustering (SLIC) algorithm [22], a k-
means-based method that groups pixels into clusters according to their proximity
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in both spatial and color spaces. Semantic segmentation models using superpixels
traditionally employ them as a pre-processing step. The image is first divided into
superpixels, followed by a prediction step in which each element is individually
evaluated using engineered hierarchical features [23] or CNNs [24, 25].

In addition to the generation of region proposals or pre-segmentation ele-
ments, local-appearance information has been also employed in post-processing
steps to improve segmentations obtained with deep CNN models. One possible
approach consists of adapting the GrabCut model [26], which is a well-known
method for interactive segmentation based on the minimization of an energy
function that models the background and foreground as Gaussian mixture mod-
els (GMM). Another such post-processing approach is to model the problem as
a CRF defined over neighboring pixels or small patches. Krédhenbiihl et al. in [7]
introduced an efficient algorithm for fully connected CRFs containing pairwise
potentials that associate all pairs of pixels in an image. This algorithm is success-
fully exploited by the Deeplab model [3] to produce fine-grained segmentations.

Chen et al. introduced the DT-EdgeNet in [11], which is a computation-
ally cheaper alternative that replaces the dense CRF with a domain-transform
approach that refines the segmentation using a modern edge-preserving filtering
method. Both approaches, however, have to be optimized in a supervised manner
when applied to different datasets or combined with different predictors.

3 Proposed Approach

The method we propose for refinement of segmentation boundaries is a generic
unsupervised post-processing module that can be coupled to the output of any
CNN or similar model for semantic segmentation. Our RGR algorithm consists
of four main steps: 1) identification of low and high confidence classification
regions; 2) Monte Carlo sampling of initial seeds; 3) region growing; and 4)
majority voting and final classification. The operations that comprise these steps
are described in detail below. In our description, we make reference to Figure 1
and Algorithm 1, which list the operations performed by our method for each
proposed detection in an image. If detections for multiple classes are present, the
algorithm is executed on the score maps associated with each class, and the final
classification is defined by computing the maximum likelihood across classes.
1) Step 1 - Thresholding the image into three regions: Conventional models
typically infer a final classification by pixel-wise thresholding the scores obtained
for each class. Instead of relying on intermediate threshold values, our refine-
ment module directly exploits the available classification scores to differentiate
between three regions: a) high confidence foreground (or object) Rp; b) high
confidence background Rp; and c¢) uncertainty region Ry. As defined in Eq. 1,
these regions are identified using two high confidence thresholds 77 and 75

Ry = {p;|M(p;) > 7r},
Ry = {pjlte < M(p;) < 1r}, (1)
Rp = {p;|M(p;) < 18},
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Fig. 1. Best viewed in color. Diagram illustrating the sequence of tasks performed by
the proposed RGR model for segmentation refinement. Each task and its corresponding
output (shown below the arrows) are described in Algorithm 1.

where p; is the j-th pixel in the input image I, and M(p;) is its correspond-
ing score in the detection confidence map M computed by the original predic-
tor (usually a CNN). High confidence regions correspond to areas where pixels
present scores near the extremes of the likelihood range. For normalized score
maps, values lower than a threshold 75 ~ 0.0 identify pixels in the high con-
fidence background, while values larger than 77 ~ 1.0 indicate high confidence
foreground elements. To recover possible false negatives, morphological shrink-
ing is performed on the background Rp boundaries. The fourth leftmost image
in Figure 1 illustrates the division of the image into the three regions Rp, Ry,
and RB.

2) Step 2 - Monte Carlo sampling of initial seeds: Inspired by the notion
of pixel affinity employed by many algorithms for superpixel segmentation, our
method applies a region growing approach to classify pixels within the uncer-
tainty zone. More specifically, we build on the simple non-iterative clustering
(SNIC) algorithm [27].

SNIC selects seeds on a regular grid over the whole image. In contrast, our
algorithm selects seeds by Monte Carlo sampling only high confidence regions.
Such an adaptation provides three main advantages for segmentation refinement.
First, our random selection of seeds allows clusters of flexible size. This is ben-
eficial for: i) growing into larger regions that were missed by the predictor, and
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Algorithm 1 RGR refinement algorithm
Input: Image I, confidence map M
Output: Refined semantic segmentation Y of image 1
1: Threshold M into three regions: background Rpg, foreground Rr and uncertain
zone Ry

2: Define a Region of Interest (Rol) according to Eq. 2

3: fori=1tons do

4: Form a set S of initial seeds by uniformly sampling from Rp U Rp

5: Generate a set of clusters 9 by performing region growing using the SNIC
algorithm with S as input

6: For each generated cluster 1/J,<f) S W“), compute confidence map M® according
to Eq. 4

7: end for

8: Compute the pixel-wise average M of M i=1,....n

9: Generate Y by pixel-wise thresholding M

ii) forming smaller clusters, rather than leaking into nearby pixels. Second, it
enforces the classification of unlabeled pixels to derive from high confidence in-
formation. And third, at each Monte Carlo iteration, clusters are grown from
different sets of randomly selected seeds. Combined with majority voting per
cluster and pixel-wise averaging across iterations (detailed in Step 3), this pro-
cedure acts as a filter against false positives detected with high confidence by
the predictor.

Our Monte Carlo approach consists of ng iterations. At each iteration i, a
set S of initial seeds is defined by uniformly sampling the high-confidence
area Ry = Rp U Rp. Let pp, represent pixels within the region Ry, where the
index h =1,...,|Rpg|. Uniform sampling of seeds can thus be performed index-
wise according to h ~ U(1,|Rg|). We determine the number of seeds to be
sampled |S(")| based on the sampling domain area (i.e. |Ry|) and the desired
average spacing between samples o, i.e., |S(*)| = |Rrl/s. The spacing between
seeds ensures the availability of paths through which all the initial centroids can
propagate throughout the uncertainty region.

3) Step 8 - Region Growing: The dashed block at the bottom of Figure 1
illustrates the sequence of operations performed by RGR for region growing.
To reduce the computation time, we restrict the region growing to a Region
of Interest (Rol) around the uncertain zone Ry. Based on the spatial distance
to Ry, the background Rp can be split into two regions: far background Rsp
and near background R, p. Since the far background is unlikely to influence the
clustering of the uncertain region, Ryp can be ignored during region growing.
Hence, we define the Rol for region growing as

Rol = R,pURrURy. (2)

Initial centroids are then grown according to an adaptation of the SNIC
algorithm. As in SNIC, we measure the similarity between a pixel and a centroid
as their distance in a five-dimensional space of color and spatial coordinates. Let
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the spatial position of a pixel be represented by a vector x = [z y]T, while its
color is expressed in the CIELAB color-space by ¢ = [l a b]T. The distance
d; 1 between a pixel j and a centroid £ is given by Eq. 3, where 0, and 0,, are
normalizing factors for spatial and color distances, respectively

x; — Xz||3 c; — ci|?
dm:\/n T T -

Also as in SNIC, our region growing implementation relies on a priority queue,
which is constantly populated with nodes that correspond to unlabeled pixels 4-
or 8-connected to a region being grown. This queue is sorted according to the
similarity between the candidate pixel and the average (centroid) of the growing
region, given by Eq. 3. While the queue is not empty, each iteration consists of:
1) popping the first element of the queue, which corresponds to the unlabeled
pixel that is most similar to a neighboring centroid k; 2) annexing this pixel to
the respective cluster w,(j); 3) updating the region centroid; and 4) populating
the queue with neighbors of this pixel that are still unlabeled.

We add a constraint to the original SNIC algorithm in order to reduce the
incidence of false detections. A node is only pushed into the queue if its distance
to the corresponding centroid is smaller than a certain value dyax. This strategy
ensures that an unlabeled pixel within Ry will only inherit information from high
confidence pixels that are sufficiently similar to it. This creates the possibility of
“orphan” elements, i.e., pixels for which no node is ever created. Such pixels are
therefore classified as background. For each set of initial seeds S, the region
growing process generates a cluster map ¥(?) that associates each pixel to a
respective cluster 1/11(;).

4) Step 4 - Majority voting and final classification: Following the region grow-
ing process, RGR conducts a majority voting procedure to ultimately classify
each generated cluster into foreground or background. As expressed in Eq. 4,
a pixel p; contributes a positive vote for foreground classification if its original
prediction score M (p;) is larger than a threshold 9. We compute the ratio of

positive votes across all pixels p; € 1/1,(:) to generate a refined likelihood map
M® for each set of clusters according to

Yk(i) = {Pj € 1/J;Ei)|M(Pj) > To}, (4)
- v
MW (pj) = e (5)
vy |

The likelihood maps M@ obtained from the ny Monte Carlo samplings are
averaged to generate a final pixel dense score map M = ”1‘ ?;1 M| Finally,
each pixel is classified into foreground if more than 50% of its average votes are

positive. Otherwise, the region is labeled as background, that is,

Y(pj) = Lymp,)>0.55 (6)
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where Y(pj) is the final binary classification map and 1 is an indicator variable
that assumes the value 1 when the corresponding condition is satisfied.

4 Experiments

To the best of our knowledge, the COCO dataset is the largest publicly available
dataset for semantic/instance segmentation, with a total of 2.5 million labeled
instances in 328,000 images [6]. However, as discussed in Section 4.1, COCO’s
ground truth annotations contain imprecisions intrinsic from its labeling proce-
dure. To minimize the influence of dataset-specific errors, we assess the perfor-
mance of our algorithm on: i) the COCO 2016 validation set; ii) the PASCAL
VOC 2012 dataset; and iii) selected video sequences of the DAVIS dataset.

Since RGR is an unsupervised post-processing refinement module, it can be
coupled to any semantic segmentation network. In Section 4.1, we evaluate its
performance in comparison to SNIC superpixels for refinement of FCIS predic-
tions. In Section 4.2, RGR, CRF, DT-EdgeNet and GrabCut are compared for
refinement of Deeplab predictions.

4.1 Comparison Against Superpixel Refinement

We denote the combination of the publicly available FCIS model and the re-
finement module RGR as FCIS+RGR. Since RGR works in a region growing
manner that is inspired by the concept of superpixel segmentation, our per-
formance analysis also includes FCIS+SNIC, a naive refinement method that
consists of performing majority voting within superpixels generated with SNIC.

Following a grid-search executed on the PASCAL VOC dataset, for all our
experiments FCIS+SNIC employs SNIC with 6,, = 0.1 and superpixel size of
100pz. RGR thresholds were defined as follows. First, 7y corresponds to the orig-
inal detector optimal threshold. For FCIS this value is 0.4, as reported in [8].
To identify the high confidence foreground, we empirically selected a high confi-
dence threshold 7 corresponding to 1.5 X 7y, hence 0.6. As for the background
detection, we set the high confidence lower threshold to 75 = 0.0.

Table 1. Comparison between results obtained by FCIS, FCIS4SNIC and FCIS+RGR
on the COCO 2016 (val), the PASCAL VOC 2012 (val), and the DAVIS datasets.

COCO 2016 VOC 2012 DAVIS
AP AP50 AP75 APS AP]VI APL mAP j(IOU) F
(%) (%) (%) (%) (%) (%) (%) (%) (%)
FCIS 35.1 60.1 36.5 9.8 38.4 59.8 70.6 71.2  69.9
FCIS 4+ SNIC 349 59.0 36.4 9.3 38.2 59.6 70.6 72.8 704

FCIS + RGR 36.9 60.6 39.3 11.4 40.7 60.5 71.1 4.4 T2.7
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COCO 2016 Segmentation Dataset. Based on the COCO official guidelines,
we evaluate the performance obtained by FCIS, FCIS+SNIC, and FCIS+RGR
on the validation set composed of 40k images. Table 1 summarizes the perfor-
mance of the three methods according to the standard COCO metrics, including
average precision (AP) averaged over 0.5 : 0.95 intersection over union (IoU)
thresholds and at different scales. While increasing the number of true positive
detections (+0.3% in AR) for all the scenarios, the naive FCIS4SNIC approach
also decreases the AP by introducing a larger number of false positives.

Our refinement model, RGR, on the other hand, increases the baseline FCIS
overall performance by 1.8%. Compared to the improvement of 0.5% in A Psg, the
increase of 2.8% in APr; demonstrates that RGR is particularly successful for
cases where the detections obtained from the input CNN are accurately located.

Figure 2 presents the average precision obtained for each of the 80 COCO
categories. Since its region growing is based on local affinity characteristics,
it is natural that the RGR refinement is especially effective for objects with
more uniform appearance (e.g. airplane, frisbee). Nevertheless, these results also
demonstrate the robustness of the refinement provided by RGR, since no object
category shows a noticeable decrease in average precision.

80
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Fig. 2. AP obtained by FCIS and FCIS+RGR for each of the 80 COCO categories.

A closer visual inspection of the output labels also shows that the metrics
obtained might be misleading. Despite the extensive efforts described in [8] to
create such a massive dataset, for some instances, the ground truth segmentation
annotations lack accurate adherence to real object boundaries. As a consequence,
improvements obtained through RGR refinement are not reflected in the final
metrics for a significant number of images. Figure 3 provides examples of the
imprecisions in ground truth annotations, collected from different object classes.
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Fig. 3. Examples of detections on the COCO (three top-most rows), PASCAL (fourth
and fifth rows) and DAVIS (two bottom-most rows) datasets. From left to right: original
image, ground truth, FCIS scores, FCIS detection, FCIS+SNIC, FCIS+RGR. The
obtained AP (COCO), mAP (PASCAL) and IoU (DAVIS) are displayed above each
corresponding detection. Ground truth annotations in the first and second rows are
also examples of COCO annotations with poor boundary adherence.

While for the airplane example the segmentation obtained using RGR is clearly
better in qualitative terms, its overlap (IoU) with the ground truth is almost
7.0% lower than the one associated with the FCIS output.

PASCAL VOC 2012 Segmentation Dataset. Table 1 also contains a sum-
mary of the results obtained by FCIS, FCIS4+SNIC and our method FCIS+RGR
on the PASCAL VOC 2012 validation set. The segmentation refinement gener-
ated using RGR provides a final mAP slightly better (+0.5%) than both FCIS
and the refined version using naive superpixel-wise majority voting.

Since boundaries constitute a small fraction of the total image pixels, such
a small difference in performance does not properly reflect the higher boundary
adherence provided by RGR refinement. Thus, we follow the strategy presented
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in [28] and also evaluate segmentation accuracy on a narrow region closer to
the boundaries to better quantify the improvements obtained by RGR. Figure
5 shows the mean IoU obtained according to the width of the evaluated region
around boundaries. RGR outperforms FCIS+SNIC by +2.0% in terms of mean
IoU in regions 10-pixels near the boundaries, which better reflects the more
detailed segmentation provided by RGR that is clear in the qualitative examples
such as in Figure 3.
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Fig. 4. Results obtained obtained by FCIS and FCIS+RGR on transfer learning ex-
periments. Left: Mean average precision (mAP) for each of the PASCAL VOC 2012
classes (val). Right: Mean IoU obtained for each of the selected DAVIS video sequences.

DAVIS 2016 Selected Video Sequences. Given the aforementioned inac-
curacies in the annotations available for the COCO and PASCAL datasets, we
additionally report quantitative results on selected video sequences of the DAVIS
dataset. The DAVIS dataset for Video Object Segmentation is composed of high
quality video sequences [10], with pixel-accurate ground truth segmentation for
each frame. From its 50 original video sequences, we selected a total of 24 se-
quences that contain target objects whose corresponding classes are contained
within the 80 objects categories composing the COCO dataset. These sequences
encompass 13 different COCO classes, including classes for which FCIS+RGR
did not provide significant performance improvements on the COCO evaluation
(e.g. person, bicycle, boat and bear).

As summarized in Table 1, segmentations obtained using FCIS+RGR have
an average J (IoU) 3.2% higher than those generated by FCIS, and 1.6% better
than the results obtained using a naive superpixel-wise majority voting for re-
finement. The official metrics for performance evaluation on DAVIS also include
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a contour accuracy metric F, which corresponds to a F-measure computed based
on the contour precision and recall. Segmentations refined using RGR yielded
an increase of 2.8% in F, confirming its ability to improve boundary adherence.
Figure 4 presents the results obtained for each video sequence, with FCIS+RGR
providing improvements in the range between 1.1% and 6.9% depending on the
sequence. The fact that larger quantitative improvements are obtained for the
DAVIS sequences corroborates our argument that the annotations available for
the COCO and PASCAL datasets provide limited information regarding bound-
ary accuracy/adherence of segmentation methods.

4.2 Comparison Against CRF, DT-EdgeNet and GrabCut

We also compare the performance of our method against the state-of-the-art
dense CRF [7], which has been successfully exploited by Deeplab models for
semantic segmentation refinement, as well as its alternative DT-EdgeNet [11]
and the GrabCut model [26]. We adopt the publicly available model of Deeplab-
LargeFOV as the base model for our comparison. This model is pre-trained
on MS COCO and fine-tuned on the augmented trainval PASCAL VOC 2012
dataset.

We perform our evaluation for the refinement of the segmentations produced
by the Deeplab-LargeFOV model on the PASCAL validation set. In this case, we
configure RGR to use a different 77 sampled from the distribution U(0.5,0.9) in
each MC region growing iteration. The other thresholds remain fixed at 75 = 0.0
and 79 = 0.5.

Quantitative results are summarized in Table 2, and qualitative examples are
available in the supplementary materials. GrabCut demonstrated limited ability
to refine the CNN predictions, which is expected since: 1) it assumes that all pixels
initialized as background/foreground are correct, and ii) the formulation using
GMMs shows limited performance when the background/foreground appearance
varies significantly. In contrast, by growing from a much higher number of seeds,
RGR forms multiple clusters that significantly differ in terms of appearance but
can share the same same semantic labels.

The combination of an optimized CRF with Deeplab-LargeFOV culminates
in a mAP of 80.1%, while the alternative using optimal DT-EdgeNet provides
78.9%. Our fully unsupervised RGR algorithm yields 79.2% mAP on this same
scenario, being hence competitive with both optimized supervised models but
with the advantage of not requiring any dataset-specific fine-tuning.

The higher generalization capability of our method is highlighted by transfer
learning experiments. We compared RGR and CRF for the refinement of FCIS
detections in the scenario described in Section 4.1, i.e., on the same selected
sequences of the DAVIS dataset but without performing any dataset-specific
fine-tuning for any method. While RGR again improves segmentation quality by
3.2%, in this scenario CRF provides only 2.7%. This demonstrates the advan-
tage of our unsupervised approach, which can be employed on different datasets
without the need for fine-tuning. Albeit providing significant improvements in
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Table 2. Comparison between different refinement methods for different networks.

VOC 2012 DAVIS

mAP (%) IoU (%)
Deeplab 76.1 FCIS 71.2
Deeplab+GrabCut 77.9 (+1.8) FCIS+GrabCut 71.2 (+0.0)
Deeplab+DT 78.9 (+2.8) FCIS+DT NA*
Deeplab+CRF 80.1 (+3.9) FCIS+CRF 73.9 (+2.7)
Deeplab+RGR 79.2 (+3.1) FCIS+RGR 74.4 (+3.2)

*implementation public available only for the Deeplab model.

segmentation performance, the dense CRF is strongly dependent on supervised
optimization of hyper-parameters for specific datasets and predictor models.

4.3 Inference Time

Finally, we evaluate the inference time of RGR in comparison to dense CRF.
As explained above, our algorithm consists of four main steps: 1) thresholding,
2) Monte Carlo sampling of seeds, 3) region growing, and 4) majority voting.
Steps 1, 2 and 4 are currently implemented in MATLAB (R2017a), while the
region growing step is implemented in C++ based on the SNIC algorithm. Run-
time assessment was performed on an Intel Xeon T™MCPU E5-2620 v3 @ 2.40GHz
(62GB). The average runtime per image in the PASCAL VOC dataset is ~ 0.5sec
with 3 Monte Carlo iterations. This is lower than the 0.8sec average inference
time of CRF’s publicly available implementation, as reported in [11].

A breakdown of the runtime analysis shows that the region growing step
requires only ~ 0.2sec per Monte Carlo (MC) iteration, which is comparable to
the 0.18sec required by the CPU-based implementation of the domain transform
method described in [11]. We highlight that the multiple MC iterations are
easily parallelizable. As summarized in Figure 5, using MATLAB’s Parallel Pool
the runtime obtained for 10 MC iterations is less than 0.1sec higher than the
0.5sec/image obtained for 3 MC iterations, which corresponds to a performance
improvement of 0.1% in the scenario described in Section 4.1.

4.4 Failure Cases

As demonstrated by the experimental results, the quality of the refinement ob-
tained using RGR depends on the accuracy of the detector model used as input,
especially in terms of localization. Although Monte Carlo sampling improves the
robustness against high confidence false positives, errors might be propagated if
the score maps collected from the detector module (CNN) contain regions with
high concentrations of false positives. An example of such case is found in Figure
3. Given the high confidence of the false positives generated by the FCIS model
for internal parts of the bicycle wheels, RGR is unable to correct these mistakes
and hence these regions remain incorrectly segmented.
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Fig. 5. Left: Mean average precision (mAP) on PASCAL on regions near object bound-
aries. Right: Runtime (orange) and performance (blue) of RGR according to the number
of MC iterations (ns) in the scenario described in Section 4.1.

5 Conclusion

We have presented RGR, an effective unsupervised post-processing algorithm
for segmentation refinement. Traditionally, the final classification step of existing
methods for semantic segmentation consists of thresholding score maps obtained
from CNNs. Based on the concepts of Monte Carlo sampling and region growing,
our algorithm achieves an adaptive thresholding by exploiting high confidence
detections and low-level image information. Our results demonstrate the efficacy
of RGR refinement, showing increased precision on three different segmentation
datasets. Our algorithm provides segmentation improvements competitive with
existing state-of-the-art refinement methods, but with the advantage of not re-
quiring any dataset- or model-specific optimization of parameters.

Moreover, we highlight limitations of existing datasets in terms of boundary
adherence of available ground truth annotations. This is an intrinsic limitation of
annotations procedures that rely on approximating segmentations as polygons.
In such cases, the quality of the segmentation is proportional to the number of
vertices selected by the user, but hand selecting more points increases the label-
ing time per object. As future work, we consider exploiting RGR for improving
annotations available for existing datasets or designing an alternative annotation
tool. Finally, we hypothesize that the performance of existing CNNs for semantic
segmentation could be improved by training with RGR as an additional step be-
fore computing losses. Such an arrangement could lead to a detector module that
optimally interacts with RGR, identifying keypoints for the refinement process.
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