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Abstract

Large-scale annotation of image segmentation datasets

is often prohibitively expensive, as it usually requires a

huge number of worker hours to obtain high-quality results.

Abundant and reliable data has been, however, crucial for

the advances on image understanding tasks achieved by

deep learning models. In this paper, we introduce FreeLa-

bel, an intuitive open-source web interface that allows users

to obtain high-quality segmentation masks with just a few

freehand scribbles, in a matter of seconds. The efficacy of

FreeLabel is quantitatively demonstrated by experimental

results on the PASCAL dataset as well as on a dataset from

the agricultural domain. Designed to benefit the computer

vision community, FreeLabel can be used for both crowd-

sourced or private annotation and has a modular structure

that can be easily adapted for any image dataset.

1. Introduction

The rapid rise in popularity of deep learning models in

computer vision has brought a corresponding demand for

labeled data. Depending on the image understanding task,

the required annotations may range from tags at the image

level (image classification), to bounding boxes (object de-

tection) or pixel-level annotations (image segmentation).

Varied and high-quality image annotations are crucial for

both training and evaluation of models that are accurate and

robust. Currently, most of the Convolutional Neural Net-

works (CNNs) models successful at image understanding

tasks [12, 29, 33] are pre-trained on the ImageNet [20] and

COCO [35] datasets, due to their large variability.

Manual labeling of large datasets is challenging and

time-consuming. The costs reported for the COCO dataset

in [35] illustrate these difficulties. Containing over 2.5 mil-

lion object instances, its labeling using Amazon’s Mechan-

ical Turk (AMT) required: 20k worker hours for category

labeling at image-level; 10k hours for instance spotting;

and, staggering, 55k hours for instance segmentation.

To meet the need for large, labeled datasets, several ap-

proaches have been proposed. Different types of crowd-

sourcing have been used to generate labeled data quickly,

from commercially available solutions such as the AMT,

annotation parties [26], volunteer/citizen science initiatives

[28], and custom-built pipelines [14].

Figure 1. This paper describes an annotation tool that generates

high-quality segmentation masks using simple freehand traces as

input. From the few user traces illustrated in the left image, our

FreeLabel tool outputs the object segmentation indicated by the

yellow overlay in the right image.

Rather than selecting individual pixels, a popular strat-

egy consists of approximating segmentations as polygons,

which can be problematic for objects with complex bound-

ary structures. Other strategies focus on labeling pre-

segmented regions, such as superpixels [9, 45]. Although

these strategies accelerate the annotation process, the seg-

mentation quality is at risk in scenarios where the pre-

computed regions fail to properly attach to boundaries.

To minimize the needs for finely-annotated training data,

the development of weakly-supervised training methods is

also a very active field of research. Strategies for propa-

gation of sparse annotation include graph cuts [40], level

sets [51] and graphical models [34]. As the leaderboard of

the PASCAL VOC 2012 dataset1 shows, the performance

of models trained in this way is still noticeably worse than

models trained with fully annotated masks.

We combine ideas from both the existing annotation

tools and the field of semi-supervised learning to facilitate

and minimize the amount of user interactions for annotat-

ing image segmentation masks, ultimately reducing label-

1http://host.robots.ox.ac.uk:8080/leaderboard/



ing costs. Our contribution consists of a web-based tool,

named FreeLabel, which allows the user to trace lines or

“freehand” scribbles of different thicknesses for the differ-

ent categories present on an image. These scribbles are

propagated to the remaining unlabeled pixels using the Re-

gion Growing Refinement (RGR) algorithm introduced in

[21] for semantic segmentation refinement. Compared to

other algorithms, RGR has the advantages of being fully un-

supervised (thus category agnostic), simple to implement,

with computational time and parameterization that allow

quick and simple user interactions.

We assess the applicability of our tool in two contexts:

the first is general object segmentation, exemplified by the

PASCAL VOC dataset that has pixel-accurate labels for

multiple different categories; and the second is the annota-

tion of images of fruit tree flowers, which has applications

for precision agriculture [22] [24]. In the first context, we

analyze how long it takes for users to become familiar with

our tool, and also the average annotation time and the seg-

mentation quality they obtain in comparison with the offi-

cial PASCAL ground-truth.

The first context serves as a training for the second,

where images of flowers of multiple fruit tree species are

annotated [22]. In this scenario, we evaluate how well users

can annotate images for which no ground-truth is available,

and thus no intermediate feedback is provided.

Our contributions to the state-of-the-art are:

1. a web-based tool, FreeLabel, for interactive annota-

tion that is shown to be intuitive and effective, with

users obtaining high-quality segmentations in an av-

erage time of 60 seconds per object for the PASCAL

dataset;

2. FreeLabel can be easily configured for any object cate-

gory or dataset, an advantage inherited from the under-

lying unsupervised growing algorithm and the modular

implementation of the tool;

3. public release of the tool together with the camera-

ready version of this paper;

4. the web-based structure of FreeLabel allows crowd-

sourcing and, when data privacy is of concern, private

annotation using a local deployment.

2. Related work

2.1. Segmentation datasets and labeling tools

Introduced in 2005, the PASCAL VOC dataset [25] is

the most widely-used dataset for visual object segmenta-

tion. Images within its 2012 valtrain set contain a total of

6929 segmented objects, distributed within 20 different se-

mantic categories. As reported in [26], the process of anno-

tating the images with pixel-level accuracy was extremely

time-consuming, even though a 5-pixel wide tolerance mar-

gin was allowed around each object.

The ImageNet dataset [51] with its 15 million labeled

images was crucial for the development of deep CNNs that

revolutionized the state-of-the-art in image classification.

Inspired by such success, the COCO dataset [35] was in-

troduced in 2015 to foster advances in object recognition,

localization and segmentation. It comprises 2.5 million ob-

jects instances in 328k images, labeled by AMT workers

using an adapted version of the OpenSurfaces interface [5].

The OpenSurfaces interface resembles the LabelMe

web-based annotation tool [41], which was introduced in

2008 and is still widely used for segmentation annotation.

Users provide object segmentations by tracing polygons

along its boundary, typing the object name after completing

the polygon. However, as mentioned in both [41] and [35],

quality control is an important concern with this scheme.

High-quality segmentations of objects with complex bound-

ary structures require large numbers of vertices, leading to a

trade-off between quality versus time spent to label each ob-

ject. For annotation of the COCO dataset, its authors opted

to minimize costs by collecting only one annotation for each

instance, which required on average 79 seconds per object.

Yet, despite efforts such as quality verification steps, the

dataset still contains some segmentation masks that poorly

attach to the object boundaries [21].

The Cityscapes dataset for semantic urban scene under-

standing [17] was also annotated using layered polygons.

To ensure that rich and high-quality pixel-level segmen-

tation masks were obtained, its corresponding 5k images

were annotated in-house. Over 1.5h were required on aver-

age for annotation and quality control of each image with a

restricted pool of high-quality annotators.

Alternative labeling strategies exploit superpixels to fa-

cilitate the annotation process. The interface used for label-

ing the COCO-Stuff dataset [9] combines SLICO superpix-

els [2] with a size-adjustable paintbrush tool that enables la-

beling of large regions at once. As mentioned by Tangseng

et al. in [45], superpixel errors can lead to significant anno-

tation errors with this kind of interface. To minimize these

artifacts, the authors described in [45] a interface that per-

forms morphology-based boundary smoothing and allows

the annotator to select the desired superpixel size to improve

boundary adherence. Yet, this increases the complexity of

the task, as the user has to try different configurations and

label each superpixel individually.

2.2. Weak and unsupervised segmentation

Graph cuts. Energy minimization approaches using

the graph cuts paradigm are suited to interactive segmen-

tation in that hard constraints are specified via squiggles

for background and foreground classes [6], [7], [27]. The

popular GrabCut algorithm [40] improved over interactive

tools such as Intelligent Scissors (Magnetic Lasso) [38],

relaxing some of the labeling burden on the user. The



user selects a bounding box of background pixels and can

further edit the generated segmentation by drawing firm

background/foreground traces. Gaussian Mixture Models

(GMMs) are used for color modeling and a Gibbs energy is

iteratively minimized using minimum cut.

Level sets. The level set approach has been used in seg-

mentation since the 1990s, and can also be formulated as

an energy minimization problem. Given an initialization,

a boundary is evolved in the direction of a local minimum

found via front propagation by solving partial differential

equations [19]. An issue with level set implementations in

the 2000s was runtime, and interactive approaches focused

on reducing runtime using GPU implementation [10] [18].

One approach allowed user input to adjust model parame-

ters, in [10], while [18] reformulated energy functionals to

incorporate user input. In [36], bounding-box initialization

and the level set formalism were used for interactive seg-

mentation. The TouchCut [51] interface exploits level-sets

to grow segmentation masks from single points, which is

effective when foreground and background colors are sig-

nificantly different.

Propagation by pixel-affinity. In a similar fashion that

superpixel algorithms segment input images into clusters

[43], several matting and segmentation algorithms use low-

level information such as texture, color affinity and spatial

proximity to classify unlabeled regions based on sparse an-

notations [16, 13, 52]. Similar methods have been used to

refine segmentation masks predicted by CNNs [32, 11, 12],

as CNNs successfully exploit high-level context for seman-

tic classification but fail to generate predictions with proper

adherence to object boundaries. One such method is the

Region Growing Refinement (RGR) [21], which combines

Monte Carlo sampling of high-confidence samples with

a region growing algorithm that is guided by spatial and

color proximity between neighboring pixels. Selected as

building-block for FreeLabel, we described more details of

RGR in Section 3.

Joint propagation and CNN training. Recent ap-

proaches aiming at interactive or weakly-supervised se-

mantic segmentation focus on architectures in which the

propagation of sparse annotations and the optimization

of network parameters are performed jointly. Differ-

ent works combine Fully Convolutional Networks (FCNs)

with: GrabCut [39]; superpixels and graphical modeling

[31, 34]; novel loss functions and training strategies for

weakly-supervised and interactive learning [31, 44, 37]. In

[3], the idea of Laplacian matting matrices is combined with

superpixels and a Deeplab-ResNet [12] to identify layers

(soft segments) that are semantically meaningful. For an-

notation of video sequences, in [15] a FCN is used to map

input pixels onto an embedded space where pixels belong-

ing to the same instance are close together, followed by a

nearest-neighbor approach that classifies pixels based on

reference masks provided at the first frame and on sparse

user inputs.

2.3. Good practices for design of annotation tools

Vondrick et al. in [50] provide a set of best practices

for crowdsourced video annotation, based on a three-year

large scale study costing thousands of dollars for image an-

notation. A critical observation is that annotating platforms

must aim at minimizing the cognitive load of the user. As

backed by psychology studies [42, 4], minimizing interrup-

tions and choices help to reduce user anxiety and increase

efficiency. Moreover, they observed that providing motiva-

tional feedback increases the workers’ confidence that their

work will not be rejected, which encourages workers to con-

tinue annotating.

Games With A Purpose (GWAP) exploit the idea that

adding game-like elements to interfaces additionally moti-

vates users to perform tasks of interest. The ESP Game [46]

for image labeling is a widely known example: an image is

shown to two players (users) and, without external commu-

nication, both enter possible words until a word is agreed

upon. The common word becomes a label for the image.

Other examples are the Peekaboom game for object local-

ization [49], Verbosity to collect commonsense facts about

words [48], and Phylo for multiple sequence analysis [30].

Users play for the desire of being entertained, rather than

for money or altruism [47]. Timed response, score keep-

ing, and randomness are important features for designing

challenging and hence enjoyable games [47], as players are

driven to play by the desire of increasing their skill level

or to score higher than others. Compared to subjective and

verbal instructions, scores are a more intuitive form of feed-

back to the user as they combine multiple aspects into a sin-

gle performance metric.

3. Method

Our object is to develop a web-based labeling interface

that: i) is intuitive to use; ii) allows users to quickly pro-

vide high-quality annotations; iii) can be easily adapted for

different datasets and categories.

As observed in Section 2.3, a good user interface should

minimize the cognitive load on the user. Thus, instead of

using propagation techniques that require supervised train-

ing or manual tuning of different sets of parameters, our tool

exploits the RGR algorithm for unsupervised region grow-

ing. Based on related works, limitations of current tools

and previous experiences with image annotation, we opted

for designing a tool where the user input consists in simply

drawing scribbles (freehand traces) or straight line segments

on the images.

By keeping all the parameterizations of the RGR algo-

rithm fixed, we avoid any non-intuitive burden on the users.



Tools:

P - Pencil ; L - Line

E - Eraser ; R - Refine

Toggles:

M - Mask; B - Boxes

T - Traces;

Trace size: � and � 

Figure 2. Diagram summarizing how the different modules of our tool, FreeLabel, interact with each other. Users can draw with a freehand

pencil, or line segments. An eraser allows undoing small errors. Dialog boxes allow the user to select the object categories associated to

the current trace, as well as adjust tool sizes. Other options, to help with visibility while labeling, such as opacity and masks, are available

via slider bars.

The quality of the segmentation provided by RGR is propor-

tional to the amount and quality of initial seeds available.

In this way, the user interaction to guide the growing pro-

cess becomes quite intuitive, with simple guidelines: traces

are grown based on color similarity and must be provided

within the boundaries of the corresponding objects; thicker

traces act as enforcement for the growing algorithm, since

more seeds are available than for thin traces; if any region

is incorrectly labeled by RGR, the user can easily correct it

by adding a new trace of the correct category.

In addition to its simple formulation, we found the RGR

implementation to be very suitable for multi-class segmen-

tation annotation. Its growing process is class agnostic,

propagating initial seeds into clusters regardless of seed la-

bel. This is advantageous in terms of running time, as the

growing process has the same computational complexity re-

gardless of the number of classes present in the image (aver-

age runtime lower than 1 second for PASCAL images [21]).

After clusters are formed for each set of seeds, they are clas-

sified into semantic categories by means of simple majority

voting. Figure 3 shows an example of this process, where

each cluster is assigned to the class for which it contains

most labeled pixels.

Figure 3. Illustration of how traces are propagated to neighboring

pixels. Left: input traces drawn by the user. Center: the bright-

ness (intensity) of the color in each pixel is proportional to the

score computed for its most likely category. For better visualiza-

tion, background traces are shown in black, while the background

likelihood is in grayscale from black (lowest) to white (highest).

Right: final segmentation obtained using maximum category like-

lihood per-pixel, with transparent background.

3.1. FreeLabel Functionality

Figure 2 shows a screenshot illustrating the functionality

of our interface, together with an example of high-quality

segmentation masks obtained from only a few user interac-

tions. Three tools are available for drawing and adjusting

traces using the mouse:



• Pencil : used for quickly tracing freehand scrib-

bles. Once the user holds down the mouse’s left-

button, traces corresponding to the mouse trajectory

are drawn. It is especially useful for regions that do

not require high precision;

• Line : traces straight lines connecting the point

where the user clicked the mouse button to the point

where it was released. It is especially helpful for

straight and thin structures, such as chairs’ legs and

animals’ limbs.

• Eraser : used to correct imprecisions in provided

scribbles, such as small portions protruding outside the

corresponding object’s boundary.

Each tool can be configured with four different thick-

nesses: small (1px thick), normal (2px), large (4px) or

huge (8px). After tracing scribbles over the image, the user

can invoke the RGR algorithm by simply clicking the Re-

fine button, which automatically grows segmentation masks

from the provided traces. To annotate smaller objects, the

user can zoom in/out using the mouse scroll, as in any mod-

ern web-browser. Finally, keyboard shortcuts are available

for all the commands to facilitate the annotation process.

In addition to intuitive commands, visualization is an-

other key factor that impacts the labeling experience and fi-

nal annotation quality. Similar to the PASCAL, COCO and

other datasets, a specific color is associated to the traces

and masks of each category. For the background, traces

are shown in black, while the masks are invisible. How-

ever, there are scenarios where the image is too dark or

contain colors with poor contrast to traces and/or masks.

To handle these cases, our interface allows the user to con-

trol the brightness (opacity) of both image and segmentation

masks using the sliders under the canvas. Moreover, masks

and traces can be hidden/shown with the click of the corre-

sponding toggle buttons.

3.2. Implementation

Our FreeLabel tool for segmentation annotation relies

on three main building blocks: a graphical user interface

(GUI), the Django framework, and the RGR algorithm. Fig-

ure 4 summarizes the relationships.

An important criterion for our design choices concerned

how easy the user’s inputs and the RGR algorithm could be

combined for the computation of segmentation masks. As

a starting point, we had access to the original RGR imple-

mentation in MATLAB. Aiming at a open-source, platform-

independent web interface, we adapted RGR’s implementa-

tion to Python and opted for the Django platform as the web

framework.

Django [1] is a free, open source Python framework

that follows the Model-View-Template architectural pat-

tern. The Model layer allows users to access database in-

formation without requiring any knowledge of the intrica-

AJAX

database

modelsourLib.py

RGR

static

Django)

(MVT)

user)interface)(browser)

template)(.html) urls.py

views.py

Figure 4. Diagram summarizing how the different modules of

FreeLabel interact with each other.

cies of database rules. The View logic layer of Django con-

tains functions that handle the communication between the

Model and the Templates, which correspond to the exhibi-

tion layers that defines what is shown to users through the

browser.

Using Figure 4 as guidance, a top-down walk-through

of our tool’s implementation starts with the graphical inter-

face displayed by the web browser to the user. The design

and functionality described in Section 3.1 and exemplified

in Figure 2 are implemented as customized Django tem-

plates, using HTML/Javascript. For actions requiring the

execution of Python commands, the template (.html) file

will trigger an AJAX call that is mapped to a correspond-

ing function in views (.py). This layer mediates the access

to the database (through the Model layer), static files or any

customized Python function.

Aiming at a modular implementation that can be easily

tailored for different datasets or configurations, we package

the implementation of RGR and other custom functions into

a separate Python library (ourLib.py). This includes func-

tions using the OpenCV [8] library, which are responsible

for image loading and converting the outputs of RGR from

mathematical arrays to images for visualization.

RGR is used as the core component of FreeLabel, and

adapted in two minor aspects to compose the annotation

tool. The original algorithm described in [21] focuses on

the refinement of a CNN’s semantic segmentation predic-

tions, a scenario with coarse segmentation masks as input.

While for that case sampling fewer seeds is beneficial to

filter out false-positives, in our scenario we aim at min-

imizing the required number of user interactions. Since

the user inputs tend to be sparse but highly-accurate, we

increase the percentage of seeds sampled in each Monte

Carlo iteration to 75%, with 8 iterations per run. Moreover,

we remove RGR’s constraint that automatically classifies

as background any pixel significantly distant from labeled

neighbors in terms of appearance and spatial position. By

removing this constraint, RGR will assign to each unlabeled

pixel the category provided for its nearest neighbor, regard-



less of how far they might be. If the propagated label is

incorrect, the user can easily improve the segmentation by

tracing an additional scribble to the corresponding region.

4. Experiments and Results

We evaluate our tool in terms of: i) quality of the ob-

tained segmentation masks; and ii) time required by users to

annotate images using FreeLabel. To that end, we defined

first a task where users were asked to annotate images from

the PASCAL VOC 2012 dataset. We opted for this dataset

as it contains good quality segmentations of multiple object

categories and is widely used by the computer vision com-

munity, such that it represents a good reference standard for

anyone searching for a suitable annotation tool.

Inspired by the idea of GWAP, we designed a game-like

version of FreeLabel for the annotation of PASCAL im-

ages. Ideally, users must provide high-quality segmentation

but also be as quick as possible, which represents a trade-

off for which it is difficult to provide the annotators with

clear guidelines. We therefore employ a game with a sim-

ple unified score metric that combines both annotation time

and mean average precision (mAP ) between the obtained

masks and corresponding ground-truth annotations, which

is computed according to the official PASCAL metrics. The

quality of the segmentation must be the main priority, while

the time spent on each image is a secondary concern. Thus,

as summarized in Figure 5, we select accuracy (mAP ) as

the base factor for the score computation, with a “bonus”

multiplying factor that is proportional to time spent on each

image.

100
200
400
800
160095%

90%
80%
70%
60%

+1%=+100

300099%

%=+200

60%

How are scores calculated?
For each category

Final score = total x bonus factor

Figure 5. Score chart presented to the users as reference for the

game where they are asked to label PASCAL images in an accurate

and timely manner.

The main goal of this metric is to constitute feedback that

tells the user how well he/she is performing the task, such

that we do not focus on a more rigorous formulation for

score computation. Instead, we aim at motivating the user

to obtain the highest accuracy as possible by increasing the

base score progressively as the mAP approaches 100%. To

motivate users to be quick, we multiply the base score with

a factor that decays over time: for an image containing a

single object, the bonus decays linearly according to Eq.1,

where t is the time elapsed in the image, T is the expected

time for the image and N is its number of objects.

bonus = max(2 +
T − t

T
, 1) (1)

T = 60 + 30× (N − 1)[sec].

Based on the performance of expert labelers, we roughly

estimated an expected time of 60 seconds for an image with

a single object, plus an extra 30 seconds per object in the

presence of two or more objects. With this formulation,

the bonus will be 2× if the user annotates the image in the

expected time T , linearly decaying to 1× if the annotation

time takes more than twice the expected duration.

After showing the participants a training video, we asked

seven different users to label an average of 25 images each,

in a task expected to take 1 hour. We followed the offi-

cial PASCAL annotation guidelines [26]2, indicating with

bounding boxes the objects to be annotated by the users.

Figure 6 summarizes the average accuracy (mAP ) and

average time necessary to annotate the different objects in

the images. Overall, users provided segmentations with

92.8% average overlap with the ground-truth masks, at a

mean pace of 61.3 seconds per object. As a reference, this is

significantly quicker than the average 79 sec/object required

for annotating the COCO dataset using the OpenSurfaces

tool [35].
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Figure 6. Distribution of the accuracies and annotation times ob-

tained by users annotating images from the PASCAL dataset.

A more detailed analysis further highlights the qualities

of FreeLabel for image annotation. Median values of 95.5%
overall accuracy and 50.1 seconds per object suggest the

presence of outliers, which is corroborated by an analy-

sis per object category. As depicted in Figure 8, objects

from the categories bicycle, chair and pottedplant are sig-

nificantly harder to label than instances from classes such as

airplane, cows and trains, which present fewer enclosed re-

gions or thin structures. However, despite requiring longer

2http://host.robots.ox.ac.uk/pascal/VOC/voc2011/guidelines.html



Figure 7. Examples of annotations provided by users for the PASCAL dataset using FreeLabel. Top: user annotations. Bottom: final grown

mask generated by FreeLabel from the corresponding inputs.

annotation times, high-quality segmentations can still be

obtained for such harder categories. Figure 7 is a compi-

lation of annotation examples provided by the users, with

the rightmost bicycle example illustrating the quality of seg-

mentation that can be obtained even for harder cases.
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Figure 8. Distribution of average accuracy for objects of the dif-

ferent categories in the PASCAL dataset.

We also observed which strategies were adopted by the

most successful users. The left plot in Figure 9 summa-

rizes the frequency of usage of the Refine button by each

user, while in the right is the average image area covered by

each user’s scribbles. User #4 exemplifies the usefulness

of interactivity using RGR: by frequently using the Refine

option, this user obtained one of the highest accuracy aver-

ages, with fewer low-quality outliers. This user also drew

fewer traces and thus finished the task faster than others who

provided annotations of similar quality.

4.1. Annotation of unlabeled images

To demonstrate the suitability of FreeLabel for the re-

alistic scenario of annotating unlabeled datasets, we per-

formed a second round of experiments where 8 users were

asked to annotate images of a significantly different dataset.

We chose the dataset made publicly available in [24, 23],

which contains images of multiple species of fruit-flowers
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Figure 9. Number of Refine calls and average image area covered

by user traces for annotating images of the PASCAL dataset.

that were acquired under varied conditions. Since the im-

ages comprising this dataset are of high-resolution (2704×
1520)px and contain dozens of small flowers, we decided to

split each image into 16 blocks of 676× 380px.

With the lessons learned from the PASCAL experiments,

we designed a new training sequence (video available as

Supplementary Material) that emphasizes good strategies

for efficient labeling with FreeLabel. Before annotating the

flowers, all users were required to annotate 10 PASCAL im-

ages with a minimum accuracy of 90% per category. Our

rationale behind this strategy is that annotating the PAS-

CAL images in a game-format works as a training session

in which the users become familiar with the interface and

grasp the main guidelines to keep in mind for annotating

any type of image segmentation dataset.

Preliminary experiments demonstrated that the lack of

performance feedback harms the motivation of the users to

perform the task and, as consequence, the quality of seg-

mentation obtained. For this reason, we structured the an-

notation sessions such that each user was required to label

9 blocks of different flower images, in batches of 3 blocks

each. Each batch contained 2 non-annotated blocks and 1
block for which ground-truth was available. We used the

ground-truth image blocks as checkpoints: if the segmen-

tation provided by the user did not meet a certain accuracy

threshold, the user would have to redo the entire batch of

3 images. The ground-truth annotations are never shown



Figure 10. Examples of flower annotations provided by users using FreeLabel. The colormap boundaries illustrate how many users labeled

the enclosed regions as flower. Colors proportionally range from dark blue (one user) to dark red (all users labeled it as flower).

to the users, such that while only every third image is actu-

ally used to compute the average accuracy, we “deceive” the

users to believe that all images are verified and must thus be

accurately labeled. Moreover, we used a rather lower ac-

curacy threshold of 70%, as the main intent is just to avoid

very poor annotations.

Results demonstrate the effectiveness of this strategy for

annotation of unlabeled images. In Figure 10, the colormap

progressively ranging from blue to red illustrates for each

enclosed region how many users labeled it as flower. This

representation qualitatively demonstrates how the annota-

tions provided by the different users for the three different

datasets converge to ideal segmentation masks. Such con-

vergence suggests that majority voting can be used to ap-

proximate ideal segmentation masks, which we then use to

statistically evaluate the variability of the annotations pro-

vided for images without ground-truth.

Apple Peach Pear

Figure 11. Distribution of the average accuracy obtained by the

users for annotation of flower datasets.

Figure 11 summarizes the average accuracy and devi-

ations observed for the images with and without ground-

truth available (in green and purple, respectively). The av-

erage overlap between the segmentations provided by the

users and the available ground-truth masks were higher than

80% for the three different datasets, reaching 95.5% for the

Pear image. The higher deviations for the Apple and Peach

datasets are mostly associated with the annotation of small

flower buds and mistakes related to bright leaves on the ap-

ple images. Such mistakes are visible as well in the ex-

amples in Figure 10. Finally, the deviations observed for

ground-truth images are similar to the ones observed for the

images without ground-truth, which indicates a somewhat

consistent performance of users for both groups of images.

5. Conclusion

We introduced FreeLabel, an interactive interface for fast

and high-quality annotation of image segmentation datasets.

In contrast to annotation tools that require drawing poly-

gons fully enclosing objects to be segmented, FreeLabel

simplifies the user interactions to freehand scribbles and

straight lines. By means of the unsupervised algorithm

known as RGR, such inputs are grown into segmentation

masks that tightly adhere to actual object boundaries.

FreeLabel has a modular design and relies solely on

open-source libraries, as we aim at a publicly available tool

that can be easily adapted for annotation of a wide range of

datasets. Its web-based arrangement can be deployed both

locally or in external servers, allowing annotations through

both private (confidential) or crowdsourced strategies.

Our experiments demonstrate that segmentations with

high overlap to ground-truth annotations of the PASCAL

dataset can be obtained in a matter of seconds. Through

short tutorial videos and a game-like version of FreeLabel,

users quickly learned how to use the tool and were capable

of properly annotating significantly different datasets.

As future work, we intend to accelerate the RGR algo-

rithm and evolve FreeLabel into a interactive tool that auto-

matically grows the user scribbles in real-time. With minor

adjustments, we believe FreeLabel could be also efficiently

used with tablets and mobile devices. Moreover, we con-

sider combining ideas such as majority voting and GWAP

for annotation of unlabeled datasets. With a multiplayer de-

sign, cooperative and antagonistic roles could be exploited

for both user motivation and annotation quality control.

Finally, we aim at hiring AMT workers for larger scale

image annotation using FreeLabel. Feedback received from

5 AMT workers hired as a preliminary experiment included

encouraging comments such as “I was surprised how well

the bounding tools worked. They seemed to accurately pick

up my responses”, and “the interface was easy to under-

stand for anyone mildly familiar with MS paint”.
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