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Abstract—In this paper, a novel method for tracker fusion
is proposed and evaluated for vision-based object tracking. This
work combines three distinct popular techniques into a recursive
Bayesian estimation algorithm. First, a semi-supervised learning
approach is used to train deep neural networks capable of detect-
ing anomalous visual tracking behavior. Next, the network output
is used to compute maximum a posteriori scores. Finally, these
scores are integrated into the observation weighing mechanism
of an existing data fusion algorithm. We evaluated the proposed
algorithm on the OTB-100 benchmark dataset and compared its
performance to the performance of the baseline fusion approach.

I. INTRODUCTION

Designing vision-based tracking algorithms that are robust

to a variety of challenging scenarios such as illumination

changes and occlusions is still an elusive goal of computer

vision research. While recent methods that use features based

on convolutional neural networks in conjunction with se-

quential Monte Carlo methods have shown promising results

[1], [2], [3], their robustness to substantial target appearance

changes is generally dependent upon specialized mechanisms

to detect that the algorithm has lost track of the target [4].

Unfortunately, these mechanisms are not algorithm-agnostic

and hence must be re-designed if the underlying tracking

approach changes.

Tracker ensemble methods are an effective and generally

applicable tool for the design of fault-tolerant object track-

ing algorithms [5], [6], [7], [8]. The Hierarchical Adaptive

Bayesian Data Fusion (HABDF) algorithm [9] is one such

approach that uses a weighting mechanism based on the Ma-

halanobis distances of the predicted observations of multiple

trackers to determine the level of confidence of individual

trackers. However, its performance is limited by is its high

susceptibility to outliers. To address this issue, we propose

substituting the Mahalanobis-based weighing approach with a

mechanism based on a deep convolutional autoencoder.

Autoencoders have shown great potential as an anomaly

detection tool [10], [11], [12]. However, to the best of our

knowledge no work has explored their use as a weighing

mechanism for tracker ensembles. The methods proposed

in [13], [14] are perhaps the closest to our work, albeit

they were applied to the different problems of monitoring

wind turbines and electrocardiograms. Our method builds on

these works by utilizing multi-frame features produced by

multiple Kalman filters and then integrating the outputs of

the individual trackers using a weighing mechanism based on

a maximum a posteriori confidence estimation method.

We use a convolutional autoencoder to learn a model that

represents a tracker’s normal operating conditions. The recon-

struction errors generated by the network during anomalous

tracking conditions is used to penalize tracking mistakes

accordingly. We acquire our training data by first running a

tracker ensemble on various video sequences and then par-

titioning the tracking results into “normal” and “anomalous”

data, and use only the “normal” data for training.

�

�

�

Fig. 1: Schematic representation of the proposed framework.

Best viewed in color.

We build features consisting of several estimates of the

positions and velocities of the target, which are generated by

Kalman filters that use the outputs of the individual trackers

as observations. These features also incorporate consecutive

image frames, thereby integrating the temporal relationship

between the outputs generated by the trackers. We use the

frames from properly functioning trackers to train a separate

autoencoder neural network for each of the trackers. Next, the

networks are deployed and the reconstruction error for various

frames is used to generate a maximum a posteriori estimate

of whether the tracker result is an inlier or outlier. This score

is used within an ensemble of trackers to improve upon the

baseline algorithm in [9] by approximately 3%.
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II. TRACKER ARCHITECTURE

Our proposed tracker is based on the HABDF algorithm

[9]. As Fig. 1 illustrates, similar to HABDF, our method fuses

the outputs of N trackers (e.g., [15], [16], [17], [18]). The

bounding boxes generated by each of these trackers are used

as inputs to separate Kalman filters. The filter outputs are then

processed by two confidence estimation methods, one based on

a majority voting process and the other based on autoencoder

reconstruction errors. Finally, the tracker outputs are combined

by a fusion stage that uses another Kalman filter to incorporate

the confidence weights determined on the previous step.

A. Individual Kalman Filters

The motion and observation models for the individual

Kalman filters are given by

xm = Axm−1 + νm (1)

ym = Cxm + ηm, (2)

where xm is the state vector and ym is the observation vector

at frame m. Eq. (1) represents the system dynamics with

A ∈ R
D×D corresponding to the transition matrix and νm ∈

R
D modeling the process noise. We define xm ∈ R

D as the

concatenation of bm and ḃm, where bm = [u, v, h, w] consists

of the vertical and horizontal coordinates of the target, u and v,

and its height and width, h and w, and ḃm =
[
u̇, v̇, ḣ, ẇ

]
is its

corresponding velocity. That is, for each tracker, the dimension

of the state vector D = 8. Although all the components of

bm as well as their velocities vary with time, we drop that

dependence to simplify the notation. In Eq. (2) C ∈ R
D

2 ×D

is the observation matrix (i.e., only the bounding boxes are

observed), and ηm ∈ R
D

2 is the measurement noise. Both

noises are assumed to be white and Gaussian with variances

Rww and Rvv .

B. Tracker Confidence Estimation

As in HABDF, our tracker uses two sources of information

to determine how to combine the outputs of the individual

trackers into a global estimate. The first mechanism is based

on a majority voting scheme based on the pairwise Euclidean

distances among the trackers, which is given by

m
(i)
d = min

j=1,2,...,N
j �=i

(||b(i) − b(j)||), (3)

where b(i) and b(j) represent the bounding boxes correspond-

ing to trackers i and j. The majority voting weight for the i-th

tracker is then computed by normalizing the distances using a

hyperbolic tangent function

w
(i)
d = ω0 + tanh

(
m

(i)
d − λ(i)

)
, (4)

where ω0 determines the vertical displacement of the weight-

ing function, and λ represents a penalization offset.

Whereas HABDF’s second mechanism to determine the

confidence of each tracker is based on the Mahalanobis

distances [19] of the observations, we generate weights for

our trackers using a mechanism that reflects the probability

that the tracker’s output corresponds to its “normal” operation.

Our approach, which we call Bayesian Autoencoder Maximum

A Posteriori Data Fusion (AMAP), uses an autoencoder-

based maximum a posteriori score to weigh the trackers.

As explained in detail in Subection III-D, we estimate the

probability P(i) that each tracker i = 1, . . . , N is lost along

with a correction offset ψ. We then employ a normalization

mechanism similar to the one used in Eq. (4) for each of the

probability scores P(i)

w(i)
a = ρ0 + tanh

(
κ(P(i) − ψ)

)
, (5)

where ρ0 represents the vertical displacement, and κ is the

slope with which the penalization takes place. The higher the

value of κ, the more abrupt the transitions. These parameters

are determined heuristically based on the performance of the

trackers on the visual tracking benchmark.

C. Data Fusion

In the data fusion step, the estimated state vectors x
(i)
m , are

provided as inputs to another Kalman filter, which acts as the

fusion center. The filter used in the fusion center is essentially

identical to those applied to the individual trackers (Eqs. 1,

2) with the exception that the observation matrix C reflects

the fact that the observations are given by the concatenated

outputs of the N trackers. That is, C ∈ R
(D·N

2 )×D, where N

is the number of trackers. The fusion center adapts itself to

changes in the performance of individual trackers by updating

its measurement noise covariance according to

Rσσ(wd, wa) =Wd +Wa, (6)

where Wd = diag(γ(1)w
(1)
d , γ(2)w

(2)
d , · · · , γ(N)w

(N)
d ), Wa =

diag(δ(1)w
(1)
a , δ(2)w

(2)
a , · · · , δ(N)w

(N)
a ), and diag(.) repre-

sents a diagonal matrix whose elements are the function

parameters. γ(i) and δ(i) are penalization weights that can be

adjusted individually based on the expected performance of

each tracker. That is, the majority voting weights w
(i)
d and the

reconstruction error weights w
(i)
a are used by the global tracker

to update Rσσ , which is then used in the global correction

stage of the Kalman filter to generate the global state xf . This

process allows the Kalman filter to assign lower confidence to

trackers that have lower weights.

III. ANOMALY DETECTION

We use the outputs produced by each tracker under normal

operation to train N distinct autoencoders. These autoencoders

are then used to estimate the confidence of the individual

trackers.

A. Network Topology

Fig. 2 illustrates our network model. The network first learns

to generate a reconstruction of the input and then uses a dense

layer to predict the current frame based on this reconstruction.

To allow the networks to differentiate between normal and

anomalous scenarios, we find the frames in which a given

tracker is operating normally (i.e., it has not lost track of
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Fig. 2: Network topology. Gray boxes represent feature maps, while the dark rectangle on the right is a dense layer. The light

blue slices are respectively the input, the learned reconstruction, and the current frame feature vector prediction.

the target), and use the outputs of all the trackers in the two

previous frames to predict it.

At each frame, the tracker states are arranged into the array

fm ∈ R
D×N according to

fm =
[
x(1)

T

m . . . x(N)T

m

]T
. (7)

The arrays fm−1 and fm−2 at the two previous frames are

then arranged as the two channels of a 2 × D × N tensor,

which is used as the input of the network. The autoencoder

output f̃m ∈ R
D×N is then given by

f̃ (i)m = h(i)(fm−1, fm−2), (8)

where h(i) : R
2×D×N → R

D×N is the autoencoder func-

tion (including the fully-connected prediction layer) for the

network trained based on the i-th tracker data. At test time,

the autoencoder reconstruction error is given by the norm of

the difference between the predicted and the observed feature

arrays, i.e.,

�(i) =
∥∥∥f̃ (i)m − fm

∥∥∥ . (9)

B. Data Partitioning

We define “normal” and “anomalous” tracker behavior

according to the Jaccard index of the tracker output with

respect to the ground truth annotations. That is, whenever

the Jaccard index for a given tracker output is less than a

threshold, that tracker’s behavior is considered “anomalous”.

Otherwise, it is considered “normal”. That is, let F be the

dataset corresponding to the tracker outputs fm, m = 1, ...,M
generated over the M frames of a set of video sequences. For

each of the i = 1, ..., N trackers, we create two datasets by

partitioning F according to

FO(i) =
{
fm ∈ F|J(b

(i)
m ) < τ

}
, (10)

FI(i) =
{
fm ∈ F|J(b

(i)
m ) ≥ τ

}
, (11)

where J(b
(i)
m ) is the Jaccard index of the bounding box

generated by tracker i at frame m with respect to the ground

truth. FI(i) represents the set of “normal” samples for tracker

i and FO(i) is its complement, i.e., the set of “anomalous”

samples.

C. Network Training

We train our networks using 51 video sequences from the

OTB-100 dataset and use the remaining 49 sequences as our

test set. We refer to our training set as F (1) and to our test

set as F (2). We train a separate network for each of the N

trackers using the frames in F
(1)

I(i) = FI(i) ∩ F (1), that is, the

frames in F (1) for which tracker i has J ≥ τ . Each frame is

prescaled so that −1 ≤ fm ≤ 1. The networks are trained with

the RMSProp [20] optimizer for 20 epochs and with uniform

Gaussian noise applied to the input.
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Fig. 3: ROC curves comparing the performance of the N

outlier detection networks with τ = .3. The left graph

demonstrates performance on the training set F (1) and the

graph on the right corresponds to the test set F (2).

To validate our method’s ability to distinguish outliers

from inliers, each network was tested on the “normal” and

“anomalous” data in both the F (1) and F (2). Figure 3 shows

that our networks can successfully detect outliers for the

four trackers used in our experimental evaluation: TLD [16],

CMT [17], Struck (ST) [18], and Goturn (GT) [15]. Because

the network is relatively shallow, the time to perform each

prediction of the autoencoder is less than 30ms, which can be

considered real-time for most tracking applications. Further

computational performance improvements should be possible

by optimizing and paralellizing our implementation.

D. Autoencoder-Based Maximum a Posteriori Estimator

Using Bayes rule, we formulate the probability that the i-th

tracker output corresponds to an outlier given a reconstruction
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error as

P (O(i)|�(i)) =
P (�(i)|O(i))P (O(i))

P (�(i))
, (12)

where P (�(i)|O(i)) is the probability of a certain reconstruc-

tion error given that the i-th tracker is in an anomalous state,

P (O(i)) is a static probability indicating the overall chance

that tracker i is incorrect, and P (�(i)) is the probability of a

given reconstruction error.

Similarly, the probability that a tracker is operating normally

is then defined as

P (I(i)|�(i)) =
P (�(i)|I(i))P (I(i))

P (�(i))
, (13)

where P (�(i)|I(i)) is the probability of a certain reconstruction

error given that the i-th tracker is operating normally, and

P (I(i)) is a static probability indicating the overall chance

that tracker i is correct.

The conditional reconstruction error probabilities

P (�(i)|O(i)) and P (�(i)|I(i)) are computed based on

the histograms of the reconstruction errors in the training

set [21]. That is, for each tracker, we generate a discrete

distribution of the reconstruction errors in F
(1)

O(i) and F
(1)

I(i)

and use the normalized value at a given reconstruction error

value �(i) as the conditional reconstruction probability. Figure

4 shows the reconstruction error histograms corresponding

to the four trackers used in our experimental evaluation. In

our application, we used histograms of 30 bins in the interval

between 0 and 3.
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Fig. 4: Reconstruction error histograms for the four trackers

for τ = .3. The outliers F
(1)

O(i) are shown in blue and inliers

F
(1)

I(i) are in green. Best viewed in color.

P (O(i)) and P (I(i)) are static terms that indicate the overall

probability that tracker i generates an outlier or an inlier,

respectively. Since the success rate of the tracker in the OTB

benchmark reflects its expected performance, we use it to

determine P (I(i)) and make P (O(i)) = 1 − P (I(i)). In

scenarios where no prior information about the performance of

the tracker is available, it is possible to simply use P (O(i)) =
P (I(i)) = 0.5.

To determine the probability that a tracker output corre-

sponds to an outlier, we use a log-maximum a posteriori

(MAP) similar the approach proposed in [22]

P(i) = ln
P (O(i)|�(i))

P (I(i)|�(i))
, (14)

which, using Eqs. (12) and (13), becomes

P(i) = ln
P (�(i)|O(i))P (O(i))

P (�(i)|I(i))P (I(i))
, (15)

P(i) = lnP (�(i)|O(i))− lnP (�(i)|I(i))+

lnP (O(i))− lnP (I(i)).

(16)

We then use P(i) to determine the confidence of tracker i as

explained in Section II-B.

E. Offset Compensation

Finally, to account for reconstruction error drift over a video

sequence, we update our penalization offset parameter ψm

at each frame using a moving average of the reconstruction

errors. That is, the average reconstruction error for tracker i

over the past λ frames is given by

�̄(i)m =
1

λ

m∑
j=m−λ

�
(i)
j . (17)

The penalization offset is then given by a fraction 0 < α ≤ 1
of the maximum reconstruction error, i.e.,

ψm = α max
i=1,...,N

�̄(i)m . (18)

In our experiments, we use α = 0.5 and λ = 2.

IV. EXPERIMENTAL RESULTS

By evaluating our approach on the OTB-100 benchmark,

we observe an overall relative improvement of approximately

3% with respect to the baseline method on both precision

and success rates as seen in Fig. 5a. It is noteworthy that the

HABDF baseline already provided a 5% increase over the best

tracker in the ensemble. The increase in certain key scenarios

was substantial and demonstrates that our method overcomes

the main limitations of the baseline method.

The largest performance improvement was observed in low

resolution sequences, where the precision rate increased by

27% and the success rate increased by 26% as shown in

Fig. 5b. In this scenario, HABDF showed a performance

degradation with respect to the best tracker alone. We also

observe that in all the scenarios considered in the OTB-100

dataset, our approach provides results that are better than

or comparable to the baseline. In Fig. 5c, which presents

the results for the occlusion scenario, we notice the least

improvement. In that scenario, our results are approximately
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Fig. 5: Results of our tracker (BAMAPDF) on the One Pass Evaluation (OPE) of the OTB-100 dataset compared to the baseline

method. The top row shows the precision plots and the bottom row shows the success plots. a) Overall OPE results. b) Results

for the Low Resolution case, which represents the largest improvement relative to the baseline method. c) Results for the

Occlusion scenario, which represents the smallest improvement.

1% better than those of the baseline. The results for all the

scenarios are shown in Table I.

Fig. 6: Scenario illustrating the case when only the two worst-

performing trackers in the ensembles are correct, whereas the

generally superior TLD and ST fail. The blue, green, white

and purple boxes correspond to the outputs of TLD, CMT,

ST and GT, respectively. The yellow box is the output of the

fused approach. Best viewed in color.

Fig. 6 shows one example that illustrates how our method

is able to handle scenarios that used to pose a challenge

for HABDF. This result is particularly important because it

shows that our method is able to integrate generally weaker

trackers. Since these trackers rely on alternative visual features

than those used by the better performing trackers, there are

cases (such as the one illustrated in Fig. 6) where they can

improve the overall tracking performance. Our method is also

capable of handling scenarios in which only one tracker in the

ensemble is correct, as shown in Fig. 7.

Fig. 7: Success shown when only the GT tracker is correct.

See the caption of Fig. 6 for a description of the colors. Best

viewed in color.

V. CONCLUSION

We introduced the Bayesian Autoencoder Maximum Like-

lihood Data Fusion (AMAP) algorithm. Our method inte-
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TABLE I: Summary of results on OPE.

Scenario AMAP
Score
(Precision
/Success)

HABDF
Score
(Precision
/Success)

Percent
Change
Relative to
Baseline

Total 0.614/0.478 0.596/0.464 3.02%/3.02%

illumination 0.558/0.461 0.524/0.427 5.68%/7.68%

out-of
-plane rotation

0.589/0.460 0.575/0.448 2.43%/2.68%

scale
variation

0.601/0.455 0.574/0.432 4.70%/5.32%

occlusion 0.565/0.444 0.548/0.431 3.10%/3.10%

deformation 0.574/0.453 0.568/0.450 1.06%/0.67%

motion
blur

0.489/0.408 .450/0.366 8.67%/11.48%

fast
motion

0.493/0.413 .455/0.377 8.35%/9.50%

in-plane
rotation

0.588/0.462 0.556/0.439 5.76%/5.24%

out
of view

0.500/0.479 0.465/0.441 7.53%/8.62%

background
clutter

0.570/0.458 0.547/0.437 4.20%/4.81%

low
resolution

0.334/0.277 0.263/0.219 27.00%/26.85%

grates the outputs of multiple tracking algorithms using an

autoencoder-based maximum a posteriori confidence estima-

tor. We evaluated our approach on the OTB-100 bench-

mark dataset, and showed that it provided performance im-

provements with respect to a benchmark tracker that uses

a Mahalanobis distance-based tracker confidence estimation

mechanism.
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